--%>

Explain Hawking radiation

Hawking radiation (S.W. Hawking; 1973): The theory which black holes emit radiation similar to any other hot body. The virtual particle-antiparticle pairs are continuously being made in supposedly empty space. Infrequently, a pair will be made just exterior to the event horizon of a black hole. There are three possibilities as:

•    Both particles are imprisoned by the hole;
•    Both particles flee the hole;
•    One particle flees while another is captured.

The first two situations are straightforward; the virtual particle-antiparticle pair recombines and returns their energy back to the void through the uncertainty principle.

This is the third situation which interests us. In this situation, one of the particles has escaped (and is speeding away to the infinity), whereas the other has been imprisoned by the hole. The escape becomes real and can now be noticed by distant observers. However the captured particle is still virtual; since of this, it has to restore conservation of energy by conveying itself a negative mass-energy. As the hole has absorbed it, the hole loses mass and therefore appears to shrink. From a distance, it comes out as if the hole has released a particle and diminished in mass.

The rate of power emission is proportional to the inverse square of the holes mass; therefore, the smaller a hole gets the faster and faster it emits the Hawking radiation. It leads to a runaway procedure; what happens whenever the hole gets very tiny is not clear; quantum theory seems to point out that some kind of "remnant" may be left behind after the hole has emitted away all of its mass-energy.

   Related Questions in Physics

  • Q : Define Trojan points Trojan points : L4

    Trojan points: L4 and L5 are the two dynamically stable Lagrange points (that is, beneath certain conditions).

  • Q : Rest mass energy of the electron What

    What do you mean by the rest mass energy of the electron?

  • Q : What is Boltzmann constant Boltzmann

    Boltzmann constant: k (L. Boltzmann) - The constant that explains the relationship between kinetic energy and temperature for molecules in an ideal gas. This is equivalent to the 1.380 622 x 10-23 J/K.

  • Q : What is Avogadro constant Avogadro

    Avogadro constant: L; NA (Count A. Avogadro; 1811) The total number of items in a sample of a substance that is equivalent to the number of molecules or atoms in a sample of an ideal gas that is at customary temperature and pressure. It is equivalent

  • Q : What is De Broglie wavelength De

    De Broglie wavelength (L. de Broglie; 1924): The prediction that particles too contain wave characteristics, where the efficient wavelength of the particle would be inversely proportional to its momentum, where the constant of the pro

  • Q : Characteristics of electronics what is

    what is the characteristics of electronics ?

  • Q : Universal law of universal gravitation

    Describe the universal law of universal gravitation? Briefly describe it.

  • Q : Explain Uncertainty principle

    Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be r

  • Q : Define Planck constant Planck constant

    Planck constant: h: The basic constant equivalent to the ratio of the energy of a quantum of energy to its frequency. This is the quantum of action. This has the value 6.626 196 x 10-34 J s.

  • Q : Scanning electron and transmission

    Give one benefit of a scanning electron microscope over the transmission electron microscope? Briefly explain it.