Problems on ANOVA

We are going to simulate an experiment where we are trying to see whether any of the four automated systems (labeled A, B, C, and D) that we use to produce our root beer result in a different specific gravity than any of the other systems. For this example, we would like the specific gravity of our root beer to be 1.025. We have found in taste tests that people will notice a difference if the specific gravity is different by more than 0.0015. From historical process control data, we believe that all of the systems have equal variances of 0.00062 for the specific gravity of the root beer they produce.
 
1.  Identify the following:

a. The factor and its levels
b. The treatments
c. Any requirements on taking observations to ensure independence 
 
2. Compute the number of observations per system you need to take for this experiment.
 
3. Randomly generate the number of observations you computed in #1 for each system in Minitab or whatever software package you are using.  Store them in four columns labeled A - D. Use the following distributions for each system: A = N(1.025,0.00062), B = N(1.026,0.00062), C = N(1.0235,0.00062), and D = N(1.0240, 0.00062).
 
4. Conduct an ANOVA, generating a boxplot and a threeYinYone graph of the residuals. Is there any indication in the three in-one plot that the assumptions of the ANOVA have been violated? Are any differences suggested by the boxplot?
 
5. Given your simulated data, are there statistically significant differences between the four systems in terms of their ability to produce root beer that tastes the same to consumers?  
 
6. Regardless of whether differences were found in #3, perform simultaneous comparisons using the Tukey procedure. If differences were found in #3, identify which systems are different than which other systems. If no differences were found in #3, in which case you would not normally conduct Tukey tests, do the Tukey tests support or not support the conclusion from #3? If it differs, which do you trust?

7. Now overwrite column D with a new set of random observations from N(1.024, 0.00182).

a. Repeat step 3 and indicate whether any assumptions of the ANOVA appear to have been violated.  (Hint: There should be one!)
b. Even if assumptions have been violated, check the results of the ANOVA. Do they agree or disagree with your previous results? Given what was done to generate the new data, what does the similarity or dissimilarity of the results tell you about the effect of the violation?
 
8. Suppose that systems A and B are located in one factory, and systems C and D are located in another factory. If you do not care whether there are differences in specific gravity by factory, only by system, how might you separate the effect of factory from the effect due to system?

   Related Questions in Basic Statistics

  • Q : Calculate the p- value Medical tests

    Medical tests were conducted to learn about drug-resistant tuberculosis. Of 284 cases tested in New Jersey, 18 were found to be drug- resistant. Of 536 cases tested in Texas, 10 were found to be drugresistant. Do these data indicate that New Jersey has a statisti

  • Q : FIN512 Entrepreneurial Finance Chapter

      Chapter 6: Discussion Question: #4 p. 223  It is usually easier to forecast sales for a seasoned firm contrast to an early-stage venture because an early-stage venture has limited access to bank credit lines, sho

  • Q : Data Description 1. If the mean number

    1. If the mean number of hours of television watched by teenagers per week is 12 with a standard deviation of 2 hours, what proportion of teenagers watch 16 to 18 hours of TV a week? (Assume a normal distribution.) A. 2.1% B. 4.5% C. 0.3% D. 4.2% 2. The probability of an offender having a s

  • Q : Get Solved LP Problems Solve Linear

    Solve Linear Programming Questions A producer manufactures 3 models (I, II and III) of a particular product. He uses 2 raw materials A and B of which 4000 and 6000 units respectively are obtainable. The raw materials per unit of 3

  • Q : Building Models Building Models • What

    Building Models • What do we need to know to build a model?– For model checking we need to specify behavior • Consider a simple vending machine – A custome rinserts coins, selects a beverage and receives a can of soda &bul

  • Q : Explain Service times Service times: A)

    Service times:A) In most cases, servicing a request takes a “short” time, but in a few occasions requests take much longer.B) The probability of completing a service request by time t, is independent of how much tim

  • Q : What is Interactive Response Time Law

    Interactive Response Time Law: • R = (L/X) - Z• Applies to closed systems.• Z is the think time. The time elapsed since&nb

  • Q : Safety and Liveness in Model Checking

    Safety and Liveness in Model Checking Approach; •? Safety: Nothing bad happens •? Liveness: Something good happens •? Model checking is especially good at verifying safety and liveness properties    –?Concurrency i

  • Q : Explain Queuing theory Queuing theory :

    Queuing theory: • Queuing theory deals with the analysis of lines where customers wait to receive a service:

    Q : Statics for each of the following

    for each of the following studies a and b decide whether to reject the null hypothesis that groiups come from identical populations. Use the .01 level. (c) Figure the effects size for each study. (d) ADVANCED TOPIC: Carry out an analysis of variance for study (a) using the strucurtal method.

©TutorsGlobe All rights reserved 2022-2023.