--%>

Explain Maxwells equations and its elegant equation

Explain Maxwells equations and its four elegant equation?

Maxwell's equations (J.C. Maxwell; 1864):

The four elegant equations that explain classical electromagnetism in its entire splendor. They are:

Gauss law:
The electric flux via a closed surface is proportional to the arithmetical sum of electric charges encompassed within that closed surface; in its differential form,

div E = rho,

Here rho is the charge density.

Gauss law for magnetic fields:

The magnetic flux via a closed surface is zero (0); no magnetic charges exist. In the differential form,

div B = 0

Faraday's law:

The line integral of the electric field about a closed curve is proportional to the instant time rate of change of the magnetic flux via a surface bounded by that closed curve; in its differential form,

curl E = -dB/dt,

Here d/dt here symbolizes partial differentiation.

Ampere's law, modified form:

The line integral of the magnetic field about a closed curve is proportional to the addition of two terms: first, the arithmetical sum of electric currents flowing via that closed curve; and second, the instant time rate of change of the electric flux via a surface bounded by that closed curve; in its differential form,

curl H = J + dD/dt,

Here d/dt here symbolizes partial differentiation.

In addition to explaining electromagnetism, his equations too predict that waves can propagate via the electromagnetic field, and would for all time propagate at similar speed -- these are electromagnetic waves; the speed can be found by evaluating (epsilon0 mu0)-1/2, that is c, the speed of light in vacuum.

   Related Questions in Physics

  • Q : What is Simultaneity principle

    Simultaneity principle: The principle which all frames of reference will contain invariant simultaneity; that is, the two events perceived as simultaneous (that is, containing the similar time coordinate) in one frame will be apparent as simultaneous

  • Q : Define Einstein-Podolsky-Rosen effect

    Einstein-Podolsky-Rosen effect: EPR effect: Consider the subsequent quantum mechanical thought-experiment: Take a particle that is at rest and has spun zero (0). This spontaneously decays into two fermions (spin 1/2 particles), that stream away in the

  • Q : Calculate power consumed : A voltage v

    : A voltage v = 150 + j180 is applied across an impedance and the current flowing is I = 5 - j4 find ? A, impedance . B, resistance. C, reactance. D, power consumed. 

  • Q : Explain Newtons law of universal

    Newton's law of universal gravitation (Sir I. Newton): Two bodies exert a pull on each other with equivalent and opposite forces; the magnitude of this force is proportional to the product result of the two masses and is too proportional to the invers

  • Q : Explain Thomson experiment or Kelvin

    Thomson experiment: Kelvin effect (Sir W. Thomson [later Lord Kelvin]): Whenever an electric current flows via a conductor whose ends are maintained at various temperatures, heat is discharged at a rate just about proportional to the

  • Q : Problem on waveforms The voltage v mV

    The voltage v mV in a circuit is given by: v = 20 sin (200 Πt - 0.7854)           where t is the time in seconds (a) State the amplitude, frequency, period and phase angle of v.(b) Determine the initial voltage.(c) Determin

  • Q : Define Machs principle Mach's principle

    Mach's principle (E. Mach; c. 1870): The inertia of any specific particle or particles of matter is attributable to the interaction among that piece of matter and the rest of the world. Therefore, a body in isolation would contain no inertia.

  • Q : Define Parsec Parsec : The unit of

    Parsec: The unit of distance stated as the distance pointed by an Earth-orbit parallax of 1 arcsec. It equals around 206 264 au, or about 3.086 x 1016 m

  • Q : Velocity of the particle Determine the

    Determine the Velocity of the particle in terms of component veocities?

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.