--%>

Examples of groups

Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, and will be left as an exercise except in the occasional more difficult or subtle case.

(A) Our first examples are groups of numbers under addition. To begin, each of the sets Z (the integers), Q (the rational numbers), R (the real numbers) and C (the complex numbers) forms a group under the binary operation + of addition (exercise). Clearly, the groups are all abelian.

(B) For any fixed n ≡ Z, the set nZ = {na : a ≡ Z} is a subgroup of Z (exercise). A few speci fic cases are:

0Z = {0};
1Z = ( -1)Z = Z;
2Z = ( -2)Z = {2a : a ≡ Z}
= the set of even integers:

   Related Questions in Mathematics

  • Q : Econ For every value of real GDP,

    For every value of real GDP, actual investment equals

  • Q : Problem on inverse demand curves In

    In differentiated-goods duopoly business, with inverse demand curves: P1 = 10 – 5Q1 – 2Q2P2 = 10 – 5Q2 – 2Q1 and per unit costs for each and every firm equal to 1.<

  • Q : Examples of groups Examples of groups:

    Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, an

  • Q : Problem on Nash equilibrium In a

    In a project, employee and boss are working altogether. The employee can be sincere or insincere, and the Boss can either reward or penalize. The employee gets no benefit for being sincere but gets utility for being insincere (30), for getting rewarded (10) and for be

  • Q : Solve each equation by factoring A

    A college student invested part of a $25,000 inheritance at 7% interest and the rest at 6%.  If his annual interest is $1,670 how much did he invest at 6%?  If I told you the answer is $8,000, in your own words, using complete sentences, explain how you

  • Q : Set Theory & Model of a Boolean Algebra

    II. Prove that Set Theory is a Model of a Boolean Algebra The three Boolean operations of Set Theory are the three set operations of union (U), intersection (upside down U), and complement ~.  Addition is set

  • Q : Problem on augmented matrix Consider

    Consider the following system of linear equations.  (a) Write out t

  • Q : Pig Game Using the PairOfDice class

    Using the PairOfDice class design and implement a class to play a game called Pig. In this game the user competes against the computer. On each turn the player rolls a pair of dice and adds up his or her points. Whoever reaches 100 points first, wins. If a player rolls a 1, he or she loses all point

  • Q : Who firstly use the finite-difference

    Who firstly use the finite-difference method?

  • Q : Explain Factorisation by Fermats method

    Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares.