--%>

Examples of groups

Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, and will be left as an exercise except in the occasional more difficult or subtle case.

(A) Our first examples are groups of numbers under addition. To begin, each of the sets Z (the integers), Q (the rational numbers), R (the real numbers) and C (the complex numbers) forms a group under the binary operation + of addition (exercise). Clearly, the groups are all abelian.

(B) For any fixed n ≡ Z, the set nZ = {na : a ≡ Z} is a subgroup of Z (exercise). A few speci fic cases are:

0Z = {0};
1Z = ( -1)Z = Z;
2Z = ( -2)Z = {2a : a ≡ Z}
= the set of even integers:

   Related Questions in Mathematics

  • Q : Theorem-Group is unique and has unique

    Let (G; o) be a group. Then the identity of the group is unique and each element of the group has a unique inverse.In this proof, we will argue completely formally, including all the parentheses and all the occurrences of the group operation o. As we proce

  • Q : Explain Black–Scholes model Explain

    Explain Black–Scholes model.

  • Q : Problem on Maple (a) Solve the

    (a) Solve the following  by: (i) First reducing the system of first order differentiat equations to a second order differential equation. (ii) Decoupling the following linear system of equa

  • Q : Elasticity of Demand For the demand

    For the demand function D(p)=410-0.2p(^2), find the maximum revenue.

  • Q : How do it? integral e^(-t)*e^(tz) t

    integral e^(-t)*e^(tz) t between 0 and infinity for Re(z)<1

  • Q : Problem on augmented matrix Consider

    Consider the following system of linear equations.  (a) Write out t

  • Q : Test Please read the assignment

    Please read the assignment carefully and confirm only if you are 100% sure. Please go through below mentioned guidelines and penalties: • Your solution must be accurate and complete. • Please do not change Subject Title of the Email. • Penalty clause will be applied in case of delayed or plag

  • Q : Explain Factorisation by Fermats method

    Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares.

  • Q : Ordinary Differential Equation or ODE

    What is an Ordinary Differential Equation (ODE)?

  • Q : Problem on reduced row-echelon The

    The augmented matrix from a system of linear equations has the following reduced row-echelon form. 280_row echelon method.jpg