--%>

Examples of groups

Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, and will be left as an exercise except in the occasional more difficult or subtle case.

(A) Our first examples are groups of numbers under addition. To begin, each of the sets Z (the integers), Q (the rational numbers), R (the real numbers) and C (the complex numbers) forms a group under the binary operation + of addition (exercise). Clearly, the groups are all abelian.

(B) For any fixed n ≡ Z, the set nZ = {na : a ≡ Z} is a subgroup of Z (exercise). A few speci fic cases are:

0Z = {0};
1Z = ( -1)Z = Z;
2Z = ( -2)Z = {2a : a ≡ Z}
= the set of even integers:

   Related Questions in Mathematics

  • Q : First-order formulas over the

    Consider the unary relational symbols P and L, and the binary relational symbol On, where P(a) and I(a) encode that a is apoint and a (sraight) line in the 2-dimensional space, respectively, while On(a,b) encodes  that a is a point, b is a line, and o lies on b.

  • Q : Nonlinear integer programming problem

    Explain Nonlinear integer programming problem with an example ?

  • Q : Problem on augmented matrix Consider

    Consider the following system of linear equations.  (a) Write out t

  • Q : Formal logic2 It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Who independently developed

    Who independently developed a model for simply pricing risky assets?

  • Q : State Prime number theorem Prime number

    Prime number theorem: A big deal is known about the distribution of prime numbers and of the prime factors of a typical number. Most of the mathematics, although, is deep: while the results are often not too hard to state, the proofs are often diffic

  • Q : Explain Factorisation by trial division

    Factorisation by trial division: The essential idea of factorisation by trial division is straightforward. Let n be a positive integer. We know that n is either prime or has a prime divisor less than or equal to √n. Therefore, if we divide n in

  • Q : Statistics Caterer determines that 37%

    Caterer determines that 37% of people who sampled the food thought it was delicious. A random sample of 144 out of population of 5000. The 144 are asked to sample the food. If P-hat is the proportion saying that the food is delicious, what is the mean of the sampling distribution p-hat?

  • Q : State Measuring complexity Measuring

    Measuring complexity: Many algorithms have an integer n, or two integers m and n, as input - e.g., addition, multiplication, exponentiation, factorisation and primality testing. When we want to describe or analyse the `easiness' or `hardness' of the a

  • Q : Uniform scaling what is uniform scaling

    what is uniform scaling in computer graphic