--%>

Examples of groups

Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, and will be left as an exercise except in the occasional more difficult or subtle case.

(A) Our first examples are groups of numbers under addition. To begin, each of the sets Z (the integers), Q (the rational numbers), R (the real numbers) and C (the complex numbers) forms a group under the binary operation + of addition (exercise). Clearly, the groups are all abelian.

(B) For any fixed n ≡ Z, the set nZ = {na : a ≡ Z} is a subgroup of Z (exercise). A few speci fic cases are:

0Z = {0};
1Z = ( -1)Z = Z;
2Z = ( -2)Z = {2a : a ≡ Z}
= the set of even integers:

   Related Questions in Mathematics

  • Q : Pig Game Using the PairOfDice class

    Using the PairOfDice class design and implement a class to play a game called Pig. In this game the user competes against the computer. On each turn the player rolls a pair of dice and adds up his or her points. Whoever reaches 100 points first, wins. If a player rolls a 1, he or she loses all point

  • Q : Containee problem For queries Q 1 and Q

    For queries Q1 and Q2, we say Q1 is containedin Q2, denoted Q1 C Q2, iff Q1(D) C Q2

  • Q : Examples of groups Examples of groups:

    Examples of groups: We now start to survey a wide range of examples of groups (labelled by (A), (B), (C), . . . ). Most of these come from number theory. In all cases, the group axioms should be checked. This is easy for almost all of the examples, an

  • Q : Explain Factorisation by trial division

    Factorisation by trial division: The essential idea of factorisation by trial division is straightforward. Let n be a positive integer. We know that n is either prime or has a prime divisor less than or equal to √n. Therefore, if we divide n in

  • Q : Explain lognormal stochastic

    Explain lognormal stochastic differential equation for evolution of an asset.

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Bolzano-Weierstrass property The

    The Bolzano-Weierstrass property does not hold in C[0, ¶] for the infinite set A ={sinnx:n<N} : A is infinite; Show that has no “ limit points”.

  • Q : Problem on sales and budget XYZ Farm

    XYZ Farm Supply data regarding the store's operations follow: • Sales are budgeted at $480,000 for November, $430,000 for December, and $340,000 for January. • Collections are expected

  • Q : Ordinary Differential Equation or ODE

    What is an Ordinary Differential Equation (ODE)?

  • Q : Who independently developed

    Who independently developed a model for simply pricing risky assets?