--%>

Define Relativity principle

Relativity principle: The principle, utilized by Einstein's relativity theories, that the laws of physics are similar, at least qualitatively, in all frames. That is, there is no frame which is better (or qualitatively any different) from any other. This principle all along with the constancy principle, comprise the founding principles of the special relativity.

   Related Questions in Physics

  • Q : Measure of the force of gravity Briefly

    Briefly explain the measure of the force of gravity on the object?

  • Q : Define Faraday constant Faraday

    Faraday constant: F (M. Faraday): The electric charge fetched by one mole of electrons or singly-ionized ions. It is equivalent to the product result of the Avogadro constant and the absolute value of the charge on an electron; this i

  • Q : Dynamic strain aging and the strain

    What is the basic difference among the dynamic strain aging and the strain aging?

  • Q : Explain Chronology protection conjecture

    Chronology protection conjecture (S.W. Hawking): The notion that the formation of any closed time like curve will (automatically) involuntarily be destroyed by the quantum fluctuations as soon as it is made. In another words, the quan

  • Q : What is Hawking temperature Hawking

    Hawking temperature: The temperature of a black hole is caused by the emission of the hawking radiation. For a black hole with mass m, it is illustrated as: T = (hbar c3)/(8 pi G k m).

  • Q : What is Negative feedback principle

    Negative feedback principle: It is the idea that in a system where there are self-propagating situations, those new situations tend to act against formerly existing situations. Such a principle is in actuality a restatement of the conservation law.

  • Q : How radiation emitted from the body

    Describe the procedure how radiation emitted from the body? Illustrate in brief.

  • Q : Define Uniformity principle Uniformity

    Uniformity principle (E.P. Hubble): The principle which the laws of physics here and now are not dissimilar, at least qualitatively, from the laws of physics in preceding or future epochs of time, or somewhere else in the Universe. This principle was

  • Q : Describe Wien displacement law Wien

    Wien displacement law: For a blackbody, the product result of the wavelength corresponding to the maximum radiances and the thermodynamic temperature is constant, then the Wien displacement law constant. As an outcome, as the temperature increases, th

  • Q : What is Curie constant and Curies law

    What is Curie constant and Curies law? Curie constant: C (P. Curie): The characteristic constant, dependent on the material in question that points out the proportionality among its susceptibility