--%>

Explain Twin paradox

Twin paradox: One of the most well-known "paradoxes" in history, predicted by Sir Einstein's special theory of relativity. It takes two twins, born on similar date on Earth. One, Albert, leaves home for a trip about the Universe at very high speeds (very close up to that of light), whereas the other, Henrik, remains at home at rests. The special relativity predicts that whenever Albert returns, he will discover himself much younger than the Henrik.

That is really not the paradox. The paradox stems from challenging to naively examine the condition to figure out why. From Henrik's point of view (and from everybody else on Earth), the Albert appears to speed off for an elongated time, linger around, and then come back. Therefore he must be the younger one, which is what we observe. However from Albert's point of view, it's Henrik (and the entire of the Earth) which are travelling, not he. According to the special relativity, when Henrik is moving associative to Albert, then Albert must compute his clock as ticking slower -- and therefore Henrik is the one who must be younger. However this is not what occurs.

So what is wrong with our investigation? The key point here is that the regularity was broken. Albert did somewhat that Henrik did not – the Albert accelerated in turning around. Henrik did no accelerating, as he and every one the other people on the Earth can attest to (neglect gravity). Therefore Albert broke the symmetry, and whenever he returns, he is the younger one.

   Related Questions in Physics

  • Q : What do you mean by the term geocentric

    What do you mean by the term geocentric? Briefly describe it.

  • Q : Define Static limit Static limit : The

    Static limit: The distance from a rotating black hole where no spectator can possibly stay at rest (with respect to the far-away stars) since of inertial frame dragging; this area is external of the event horizon, apart from at the poles where it meet

  • Q : Define Planck equation Planck equation:

    Planck equation: The quantum mechanical equation associating to the energy of a photon E to its frequency nu: E = h nu.

  • Q : Describe Solar water heating Solar

    Solar water heating: Solar water heaters are simple, reliable, famous and widespread. They are probably the Low Carbon technology closest to being commercially practised. The most efficient designs concentrate solar radiation onto a small diameter tub

  • Q : Atomic model which the Erwin

    Briefly state the atomic model which the Erwin Schrodinger creates?

  • Q : Explain Michelson-Morley experiment

    Michelson-Morley experiment (A.A. Michelson, E.W. Morley; 1887): Probably the most famous null-experiment of all time, designed to confirm the existence of the proposed "lumeniferous aether" via which light waves were considered to pr

  • Q : Define Keplers 1-2-3 law Kepler's 1-2-3

    Kepler's 1-2-3 law: The other formulation of Kepler's third law, that relates to the mass m of the primary to a secondary's angular velocity omega and semi major axis a: m o = omega2 a3

  • Q : Define Hubbles law Hubble's law (E.P.

    Hubble's law (E.P. Hubble; 1925): The relationship discovered between radial velocity and distance. The further away a galaxy is away from is, the quicker it is receding away from us. The constant of proportionality is the Hubble cons

  • Q : Branches of physics Briefly list out

    Briefly list out the name of all the branches of physics?

  • Q : Candela Candela : The basic SI unit of

    Candela: The basic SI unit of luminous intensity stated as the luminous intensity in a given direction of a source which emits monochromatic photons of frequency 540 x 1012 Hz and encompasses a radiant intensity in the direction of 1/683 W/