--%>

curie's law

state and explain curie's law.

   Related Questions in Physics

  • Q : Define Newton meter What do you mean by

    What do you mean by the term Newton meter? Explain briefly?

  • Q : Define Schwarzschild radius

    Schwarzschild radius: The radius ‘r’ of the event horizon for a Schwarzschild black hole of mass m is specified by (in geometrized units) r = 2 m. In its conventional units: r = 2 G m/c2

  • Q : Fundamental principles of the regulation

    Describe the fundamental principles of the regulation? Briefly describe the principles?

  • Q : Weights in pounds of the liquid gallons

    Write down the weights in pounds of the liquid gallons? Briefly describe it.

  • Q : Define Sievert or SI unit of dose

    Sievert: Sv: The derived SI unit of dose equivalent, stated as the absorbed dose of the ionizing radiation multiplied by internationally-agreed-upon dimensionless weights, as various kinds of ionizing radiation cause various kinds of damage in the liv

  • Q : Define Rydberg constant Rydberg

    Rydberg constant (Rydberg): The constant that governs the relationship of the spectral line features of an atom via the Rydberg formula. For hydrogen, it is around 1.097 x 107 m-1.

  • Q : Explain Tachyon paradox Tachyon

    Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero e

  • Q : Black-hole dynamic laws or laws of

    Explain  laws of black-hole dynamics or First law of black hole dynamics and Second law of black hole dynamics? 

    Q : Define Ehrenfest paradox Ehrenfest

    Ehrenfest paradox (Ehernfest, 1909): The special relativistic "paradox" including a fast rotating disc. As any radial segment of the disc is perpendicular to the direction of motion, there must be no length contraction of the radius;

  • Q : What is Super fluidity Super fluidity :

    Super fluidity: The phenomenon by which, at adequately low temperatures, a fluid can flow with zero (0) viscosity. These causes are related with the superconductivity.