--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Weights in pounds of the liquid gallons

    Write down the weights in pounds of the liquid gallons? Briefly describe it.

  • Q : Define Kilogram or SI unit of mass

    Kilogram: kg: The basic SI unit of mass that is the only SI unit still maintained by a physical artifact: a platinum-iridium bar reserved in the International Bureau of Weights and Measures at Sevres, France.

  • Q : Explain Archimedes' principle What is 

    What is Archimedes' principle? A body which is submerged in a fluid is buoyed up by a force equivalent in magnitude to the weight of the fluid which is displaced, and directed upward all along a line via the c

  • Q : What is Simultaneity principle

    Simultaneity principle: The principle which all frames of reference will contain invariant simultaneity; that is, the two events perceived as simultaneous (that is, containing the similar time coordinate) in one frame will be apparent as simultaneous

  • Q : Characteristics of electronics what is

    what is the characteristics of electronics ?

  • Q : Calculate time needed for thermocouple

    A thermocouple of K type is suddenly exposed to air with temperature of 1273K, Initial temperature was 293 K. Calculate the time needed for the thermocouple read the temperature with accuracy of better that 99%. Ignore radiation and conduction. The measuring element has a ball shape of diameter o

  • Q : Radar gun problem Whenever a radar gun

    Whenever a radar gun states the pitch is 90 miles per hour at what point in the balls travel to home plate is the radar gun evaluating the velocity?

  • Q : Write a short note on diffuse reflection

    Write a short note on diffuse reflection?

  • Q : Explain Right-hand rule Right-hand

    Right-hand rule: The trick for right-handed coordinate systems to establish which way the cross product of two three-vectors will be directed. There are some forms of this rule, and it can be exerted in many manners. If u and v are two vectors that ar

  • Q : Define Carnots theorem Carnot's theorem

    Carnot's theorem (S. Carnot): The theorem that states that no engine operating between the two temperatures can be more proficient than a reversible engine.