--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : What is Edwards-Casimir quantum vacuum

    What is Edwards-Casimir quantum vacuum drive: The hypothetical drive developing the peculiarities of quantum mechanics by restricting permitting wavelengths of the virtual photons on one side of the drive (that is the bow of the ship); the pressure pr

  • Q : What is Coriolis pseudoforce Coriolis

    Coriolis pseudoforce (G. de Coriolis; 1835): The pseudoforce that arises since of motion relative to a frame that is itself rotating relative to the second, inertial frame. The magnitude of the Coriolis "force" is tot

  • Q : Negative mass defect State is it

    State is it possible that the nucleus consists of negative mass defect?

  • Q : Describe Solar water heating Solar

    Solar water heating: Solar water heaters are simple, reliable, famous and widespread. They are probably the Low Carbon technology closest to being commercially practised. The most efficient designs concentrate solar radiation onto a small diameter tub

  • Q : Solution Of Laplace’s Equation 1. Solve

    1. Solve Laplace's equation for the electrical potential between two infinite parallel plates, which have a charge density per unit area -on one plate and a charge density per unit area -! on the second plate, and determine the electric field between the plates from t

  • Q : Dielectric Materials Dielectric is a

    Dielectric is a material in which energy can be accumulated. Ideally, it  is  a non-conductor  of  electric  charge  like  insulators, but  an  efficient   supporter  of  electrostatic  fields. The

  • Q : What is baryon decay Baryon decay - The

    Baryon decay -The idea expected by several grand-unified theories, those classes of subatomic particles termed as baryons (of which the nucleons -- neutrons and protons -- are members) are not eventually stable however indeed de

  • Q : Explain Gauss law for magnetic fields

    Gauss' law for magnetic fields (K.F. Gauss): The magnetic flux via a closed surface is zero (0); no magnetic charges present; in its differential form, div B = 0

  • Q : Define Atwood's machine Atwood's

    Atwood's machine: The weight-and-pulley system devised to compute the acceleration due to gravity at Earth's surface by computing the total acceleration of a set of weights of identified mass about a frictionless pulley.

  • Q : Define Joule-Thomson effect or

    Joule-Thomson effect: Joule-Kelvin effect (J.P. Joule, W. Thomson [later Lord Kelvin]): The change in temperature which takes place whenever a gas expands into an area of lower pressure.