--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : What is Cosmic censorship conjecture

    Cosmic censorship conjecture (R. Penrose, 1979): The conjecture, so far wholly undemonstrated in the context of general relativity, that all singularities (that is with the possible exception of the big bang singularity) are attended

  • Q : Define Atwood's machine Atwood's

    Atwood's machine: The weight-and-pulley system devised to compute the acceleration due to gravity at Earth's surface by computing the total acceleration of a set of weights of identified mass about a frictionless pulley.

  • Q : Define Superconductivity

    Superconductivity: The phenomenon by which, at adequately low temperatures, a conductor can conduct the charge with zero (0) resistance. The current theory for describing superconductivity is the BCS theory.

  • Q : Explain Null experiment Null

    Null experiment: The experiment which, after being performed, yields no outcome. The null experiments are just as significant as non-null experiments; when current theory predicts an observable result (or predicts there must be no observable result),

  • Q : What is Refraction law Refraction law:

    Refraction law: For a wave-front travelling via a boundary among two media, the first with a refractive index of n1, and the other with one of n2, the angle of incidence theta is associated to the angle of refraction phi by:

  • Q : Define Hubbles law Hubble's law (E.P.

    Hubble's law (E.P. Hubble; 1925): The relationship discovered between radial velocity and distance. The further away a galaxy is away from is, the quicker it is receding away from us. The constant of proportionality is the Hubble cons

  • Q : Problem on Adiabatic law When air is

    When air is compressed adiabatically the law connecting the absolute temperature T and the pressure P is of the form T = A.Pn where A and N are constants. Show by drawing a suitable linear graph that the experimental dat

  • Q : How fireworks turn to shapes similar to

    Briefly illustrate how do fireworks turn to shapes similar to hearts and stars?

  • Q : Branches of physics Briefly list out

    Briefly list out the name of all the branches of physics?

  • Q : Explain Casimir effect Casimir effect

    Casimir effect (Casimir): The quantum mechanical effect, where two very big plates positioned close to each other will experience an attractive force, in the nonattendance of other forces. The cause is implicit particle-antiparticle p