Concept of Elasticity:
Solids tend to change their size and shape whenever sufficiently strong external forces are exerted to them and to return to their original size or shape after the forces causing the change are removed. The Solids that retain their shape or size after the force causing the change has been removed are stated to be 'elastic', and this property of solids is termed as elasticity.
Define:
1) Elasticity is the capability of a substance to get back its original size and shape after being distorted through an external force.
2) An elastic material is one which regains its original size and shape after distorting the external force which has been removed.
Statement of Hooke's Law:
Hooke's law defines that, given the elastic limit of an elastic material is not exceeded, the extension, 'e', of the material is directly proportional to the applied force, F.
Mathematically,
F ∝ e
That is, F = K e
Here, k is the constant of proportionality termed as elastic constant or force constant or stiffness of the material.
From the above formula, K = F/e
If 'F' is in Newton and 'e' in meters, then K is in Newton per metre (Nm-1)
Elastic constant or stiffness of the elastic material is the force needed to produce the unit extension of the material.
The working of spring balance is dependent on Hooke's law. In this situation F = mg, the weight of the body that is proportional to 'e', the extension of the spring.
Experimental Verification of Hooke's Law:
Consider two similar metallic wires A and B on which main scale and vernier scales are fixed and the wires are hanged from the rigid support.
The kinks generated on the reference wire A and experimental wire B are eradicated by loading weight at their free ends termed as dead loads by the assistance of meter scale length l at wire B is measured and by the assistance of micrometer screw gauge its radius 'r' is as well measured.
Now, main scale reading and vernier scale readings are noted. The equivalent loads are added on the pan of wire B and corresponding reading are noted. Assume, w1, w2, w3 and w4 are the weights on the wire B and e1, e2, e3 and e4 are corresponding elongations generated, in elastic limit.
As, Y = (F/A)/(Δl/l) = (Fl)/(πr2e)
When a graph is plotted between F and e, a straight line from horizon is achieved whose slope F/e is computed and we have,
Y = Slope x (l/πr2)
Then, the ration (weight/Elongation) is computed and found that, F/e = constant
That is, F/e = constant
Thus, F ∝ e
Young's Modulus of Elasticity:
Assume that a wire of length l (m) and cross-sectional area A (m2) is extended via e (m) through a force F (N).
(i) The ratio of the force to area, F/A is termed as the stress or 'tensile' of the elastic material.
Stress = F/A
(ii) The ratio of extension, 'e' to the original length, l of the wire that is, e/l is termed as the tensile strain of the wire.
Therefore Strain = e/l
F = stress x A
e = Strain x l
By using Hooke's law, F = ke
∴ Stress x A = k x Strain x l
∴ Stress = (kl)/A x strain
∴ Stress = k1
Constant = kl/A
Stress/Strain = k1
Stress ∝ Strain
Therefore Hooke's law can as well be stated as follows:
The tensile stress of the material is directly proportional to the tensile strain given the elastic limit is not surpassed.
The constant of proportionality, k1 is termed as Young's modulus of elasticity and is symbolized by the symbol 'γ'.
∴ Young's modulus (γ) = Stress/Strain
(γ) = (F/A)/(e/l)
The unit of γ is Nm-2 (Newton per square metre) the similar unit as stress, as strain consists of no unit.
Dimension of γ = (Dimension of stress)/(Dimension of strain)
= ML-1T-2
Elastic Potential Energy:
Definition: The elastic potential energy of a compressed or stretched material is the capability of the material to do work.
Elastic potential energy occurs due to work done in stretching or compressing the material.
W = 1/2 Fe = (1/2) ke2
Here 'F' is the maximum stretching (or compressing) force, 'e' is the extension (or compression) and 'k' is the force constant or rigidity of the material.
Illustration or application of elastic potential energy:
Whenever you stretch the rubber of a catapult and project a stone, the elastic potential energy stored in the rubber is transformed into the kinetic energy of the flying stone according to the law of conservation of energy.
Tutorsglobe: A way to secure high grade in your curriculum (Online Tutoring)
Expand your confidence, grow study skills and improve your grades.
Since 2009, Tutorsglobe has proactively helped millions of students to get better grades in school, college or university and score well in competitive tests with live, one-on-one online tutoring.
Using an advanced developed tutoring system providing little or no wait time, the students are connected on-demand with a tutor at www.tutorsglobe.com. Students work one-on-one, in real-time with a tutor, communicating and studying using a virtual whiteboard technology. Scientific and mathematical notation, symbols, geometric figures, graphing and freehand drawing can be rendered quickly and easily in the advanced whiteboard.
Free to know our price and packages for online physics tutoring. Chat with us or submit request at [email protected]
Principles of independent assortment tutorial all along with the key concepts of Mendel's Second Law of Inheritance, Genotypes and Mendel's first law
tutorsglobe.com income and substitution effects assignment help-homework help by online demand tutors
tutorsglobe.com maize grain seed structure assignment help-homework help by online structure of maize grain tutors
www.tutorsglobe.com offers humanities homework help, humanities assignment help, humanities online tutoring and answering questions to humanities subject.
Profit Sharing and Labour Co-partnership - Workers share in profit might be dealt along with distributed in cash to the workers, credited to the worker's provident fund and pension fund other option is to make a part payment in cash and to credit a part to the provident fund account.
Gravimetric Analysis tutorial all along with the key concepts of Types of Gravimeter analysis, Precipitation Gravimetric Analysis, Volatilization gravimetric analysis, Application of Gravimetry
Theory and lecture notes of File access methods all along with the key concepts of file access methods, data management. Tutorsglobe offers homework help, assignment help and tutor’s assistance on file access methods.
nucleus and radioactivity tutorial all along with the key concepts of the nucleus, nuclear reactions, radioactivity, nuclear radiations, radioactivity uses and hazards of radioactivity
www.tutorsglobe.com offers thiols & sulfides homework help, thiols & sulfides assignment help, online tutoring assistance, organic chemistry solutions by online qualified tutor's help.
Damped Harmonic Motion tutorial all along with the key concepts of restoring force, damping force, instantaneous velocity of oscillator, Solutions of differential equation, Heavy Damping, Critical Damping, Logarithmic Decrement, Relaxation Time
Reproduction and life cycle in algae tutorial all along with the key concepts of Vegetative Reproduction, Asexual Reproduction, Sexual Reproduction, Life cycle in algae, Haplontic type, Diplontic type, Isomorphic type, Heteromorphic type, Haplobiontic type and Diplobiontic type
tutorsglobe.com translocation types assignment help-homework help by online translocation of solutes tutors
tutorsglobe.com functions of money assignment help-homework help by online money tutors
Theory and lecture notes of Theory of Expected Utility all along with the key concepts of theory of expected utility, Petersburg Paradox, Nicholas Bernoulli. Tutorsglobe offers homework help, assignment help and tutor’s assistance on Theory of Expected Utility.
Kingdom Protista and Fungi tutorial all along with the key concepts of Morphology of kingdom protista and fungi, Categorization, Protozoan Protist, The Algal Protists, The Fungus-like Protists, Categorization in Kingdom Protista and features of Kingdom Protista
1949261
Questions Asked
3689
Tutors
1443005
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!