Problem on weight fraction
A gas contains 350 ppm of H2S in CO2 at 72°F and 1.53 atm pressure. If the gas is liquified, what is the weight fraction H2S?
Expert
Now we consider 1liter of CO2 at 72deg F {[K] ≡ (72+ 459.67) × 5/9}=295.3722 K 1.53 atm
So No moles n= PV/RT =1.53atm*1liter/(0.08205liter-atm/K-mole*295.3722) =0.063131mole
So wt of CO = 0.063131mole*28g/mole =1.76767g
Now 350 ppm H2S would have a volume 350 microlitre ( µL ) per litre, = 350 ppm =350E-6 litre
So No of moles H2S = n= PV/RT =1.53atm*(350E-6)liter/(0.08205liter-atm/K-mole*295.3722K) = 2.20959E-05 mole
The MW H2S = 34.116g/mole
So wt of H2S = 0.000753823 g
So total weight =1.768423823g
So %wt H2S = (0.0007538236/1.768423823g)*100%=0.04262%
A stream of steam at 15 bar and 300 oC is used to produce work using a steam turbine. a. Before the turbine, steam flows in a pipe (4 cm in diameter) at a mass flow rate of 3 g/s. Calculate the mean velocity in the pipe
you look up the specific gravity of 96% H2SO4 and find it is 1.858.calculate the weight
A heater (heat source temperature = 527 K) and turbine are connected in series as shown below: Q : Thermodynamics Please can you look into Please can you look into this assignment and let me know if its solve able.
Please can you look into this assignment and let me know if its solve able.
I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may assume ideal gas behaviour. For SO2 take the heat capacity at constant pressure to be CP/R = 3.267+5
Natural Gas is flowing through a 10 inch schedule 40 pipe. The gas is at 109°F and 7.3 psig. The outside air temperature is 92°F. If the flow rate of the gas is 8,000 SCFM: What is the flow rate in lb/hr?
The feed of an ammonia synthesis reactor is 25% (lbmole) nitrogen with the balance hydrogen. The flow rate is 3000 kg/h at 65°C and 95 bar. Calculate the flow rate of nitrogen to the reactor in kg/hr.
The Clausius-Clapeyron equation gives us an expression for dP/dT. Now we will derive an analog to the Clausius-Clapeyron equation by obtaining an expression for dT/dµ when two phases are at equilibrium. For simplicity, let’s derive this fo
to determine the temperature that occurred in a fire in a warehouse, the arson investigator noticed that the relief valve on a methane storage tank had popped open at 3000 psig, the rated value. Before the fire started, the tank was presumably at ambient conditions and the gage read 1950 psig. If th
18,76,764
1928660 Asked
3,689
Active Tutors
1435059
Questions Answered
Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!