--%>

Problem on heat of sublimation

Using the vapor pressure data provided below, estimate

i) the heat of sublimation of ice,

ii) the heat of vaporization of water,

iii) the heat of fusion of ice and compare your estimate with the published value of 6010 J/moL

iv) the triple point of water (pressure and temperature). Solve the nonlinear.

                                           T(°C)                             Vapor Pressure (mm Hg)
Ice                                       -4                                            3.280
                                            -2                                            3.880
Water                                   +2                                            5.294
                                            +4                                            6.101

E

Expert

Verified

At 1 atm pressure, ice melts at 0°C

density of ice = 920 kg/m3
density of liquid water = 997 kg/m3

Now using the Clapeyron equation

dP/dT = LP/RT2  [ where Vg>>>Vl]

On integration:

Ln[P1/P2] = -L/R[ 1/T1 -1/T2]

Ln(3.880/3.280)= -L/R [ 1/271-1/269]

So Ice  L = ΔH sublimation = - 50911.5 J/mol =-50.9115KJ/mole

Similarly for water L = ΔH vap =- 44929.9 J/Mole =- 44.929 KJ/mole

Now At triple point Ice /Water /Saturate water Vap co-exists Now using the Thermo concept at triple point 

ΔH sublimation = ΔH vap + ?H fusion

Similarly  at triple vap pressure of water = vap pressure of ice

LnP = ln(3.880)-50911.5/8.3145[1/T – 1/271] = ln(5.294)-44929.9/8.3145[1/T-1/275]

So Solving for T we get T =273.1297K

Now Solving for P we get

LnP = ln(3.880)-50911.5/8.3145[1/273.129 – 1/271]
LnP = 1.532014

So P = 3.589546 mmHg

   Related Questions in Chemical Engineering

  • Q : Estimating solubility of oxygen in water

    The Henry's law constant for oxygen in water is as follows: Temperature, °C                     0              &nbs

  • Q : Matlab/Simulink assignment Modeling eye

    Modeling eye movements is commonly performed in the Matlab/Simulink pacakage. Based on the Physiological evidence, oculomotor plants have been designed to simulate various eye movements. Choose two eye movement models, one for saccades and the other for pursuit, and simulate the following amplitudes

  • Q : Calculating flow rate of nitrogen The

    The feed of an ammonia synthesis reactor is 25% (lbmole) nitrogen with the balance hydrogen. The flow rate is 3000 kg/h at 65°C and 95 bar. Calculate the flow rate of nitrogen to the reactor in kg/hr.

  • Q : Problem on ideal gas law A stream of

    A stream of steam at 1 bar and 400 K enters a compressor through a pipe with cross-sectional area of 0.1 m2 at a velocity of 5 m/s. The pressure of the outlet stream is at 5 bar, temperature is at 500 K, and velocity is 1 m/s. Assume the steam can be descri

  • Q : Hh to determine the temperature that

    to determine the temperature that occurred in a fire in a warehouse, the arson investigator noticed that the relief valve on a methane storage tank had popped open at 3000 psig, the rated value. Before the fire started, the tank was presumably at ambient conditions and the gage read 1950 psig. If th

  • Q : Problem on steam flow in a pipe A

    A stream of steam at 15 bar and 300 oC is used to produce work using a steam turbine. a. Before the turbine, steam flows in a pipe (4 cm in diameter) at a mass flow rate of 3 g/s. Calculate the mean velocity in the pipe

  • Q : Problem on molar flow rate I) Sulphur

    I) Sulphur dioxide (SO2) with a volumetric flow rate 5000cm3/s at 1 bar and 1000C is mixed with a second SO2 stream flowing at 2500cm3/s at 2 bar and 200C. The process occurs at steady state. You may as

  • Q : Problem on weight fraction A gas

    A gas contains 350 ppm of H2S in CO2 at 72°F and 1.53 atm pressure. If the gas is liquified, what is the weight fraction H2S?

  • Q : Calculating adiabatic flame temperature

    Calculate the adiabatic flame temperature of acetylenes gas at a pressure of 1 bar under the following conditions. The reactants are initially at 298K. Assume that the acetylene reacts completely to form CO2 and H2O:

    Q : Bsc what is the latent heat of

    what is the latent heat of vaporization for hexane