--%>

Physics Assignement

complete assignment with clear solution and explanation

   Related Questions in Physics

  • Q : Newtons laws of motion Briefly

    Briefly illustrate all the Newton s laws of motion?

  • Q : When the intermolecular forces are

    Describe when the intermolecular forces are strongest? Briefly state it.

  • Q : Explain Event horizon Event horizon:

    Event horizon: The radius which a spherical mass should be compressed to in order to convert it into a black hole, or the radius at which the time and space switch responsibilities. Once within the event horizon, it is basically impossible to escape t

  • Q : Define Heat pumps Heat pumps move heat

    Heat pumps move heat from one place to another. They work similar to refrigeration. The movement of heat takes energy, either electrical energy as in the use of  vapor compression heat pumps or thermal energy as in the use of absorption heat pump

  • Q : Describe the term Specular Reflection

    Describe briefly the term Specular Reflection?

  • Q : Explain Youngs experiment or

    Young's experiment: double-slit experiment (T. Young; 1801): A well-known experiment that exhibits the wave nature of light (and certainly of other particles). The light is passed from a small source into an opaque screen with the two thin slits. The

  • Q : Explain Rayleigh-Jeans law

    Rayleigh-Jeans law: For a blackbody at the thermodynamic temperature T, the radiance R over a range of frequencies between the nu and nu + dnu is specified by: R = 2 pi nu2 k T/c2.<

  • Q : Define Lumen or SI unit of luminous flux

    Lumen: lm: The derived SI unit of luminous flux, stated as the luminous flux produced by a uniform point source of 1 cd releasing its luminous energy over a solid angle of 1 sr; it therefore has units of cd sr.

  • Q : Calculate power consumed : A voltage v

    : A voltage v = 150 + j180 is applied across an impedance and the current flowing is I = 5 - j4 find ? A, impedance . B, resistance. C, reactance. D, power consumed. 

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source