--%>

Mathematical and Theoretical Biology

Mathematical and theoretical biology is an interdisciplinary scientific research field with a range of applications in the fields of biology, biotechnology, and medicine. The field may be referred to as mathematical biology or biomathematics to stress the mathematical side or as theoretical/ hypothetical biology to stress the biological side. It includes at least 4 major subfields: biological mathematical modeling, complex systems biology (CSB), bioinformatics and computational biomodeling or biocomputing. Mathematical biology has aim at the mathematical representation treatment and modeling of biological processes, using several applied mathematical methods and tools. It has practical and theoretical applications in biotechnology, biological and biomedical research. For illustration, in cell biology the protein interactions are often represented as "cartoon" models, which, though easy to visualize and do not accurately describe the systems studied. To do this, precise mathematical models are required. By describing systems in a quantitative manner their behaviour can be better simulated and hence properties can be predicted that might not be evident to the experimenter.

This type of mathematical areas such as calculus, probability theory, statistics, linear algebra, algebraic geometry, abstract algebra, graph theory, combinatorics, dynamical systems, differential equations, topology and coding theory are now being applied in biology. Some mathematical areas, like statistics, were developed as tools during the conduct of research into mathematical biology.

374_Mathematical & Theoretical Biology Homework Help.jpg

Importance

Applying mathematics to biology has a long history, but recently has there been an explosion of interest in the field. Some reasons for this includes:

The explosion of data-rich information sets, because of the genomics revolution, which are not easy to understand without the use of analytical tools, Recent development of mathematical tools such as chaos theory to help understand complex, that is non-linear mechanisms in biology, an increase in computing power which enables calculations and simulations to be performed that were not previously possible, and an increasing interest in silico experimentation due to ethical considerations, risk, unreliability and other complications involved in human and animal research.

Email based Mathematical Biology Homework Help -Assignment Help

Tutors at the www.tutorsglobe.com are committed to provide the best quality Mathematical Biology homework help - assignment help. They use their experience, as they have solved thousands of the Mathematical Biology assignments, which may help you to solve your complex Mathematical Biology homework. You can find solutions for all the topics come under the Mathematical Biology. The dedicated tutors provide eminence work on your Math homework help and devoted to provide K-12 level math to college level math help before the deadline mentioned by the student. Mathematical Biology homework help is available here for the students of school, college and university. Tutors Globe assure for the best quality compliance to your homework. Compromise with quality is not in our dictionary. If we feel that we are not able to provide the homework help as per the deadline or given instruction by the student, we refund the money of the student without any delay.

Qualified and Experienced Mathematical Biology Tutors at www.tutorsglobe.com

Tutors at the www.tutorsglobe.com take pledge to provide full satisfaction and assurance in Mathematical Biology homework help. Students are getting math homework help services across the globe with 100% satisfaction. We value all our service-users. We provide email based Mathematical Biology homework help - assignment help. You can join us to ask queries 24x7 with live, experienced and qualified math tutors specialized in Mathematical Biology.

   Related Questions in Mathematics

  • Q : Research Areas in Medical Mathematical

    Some Research Areas in Medical Mathematical Modelling:1. Modeling and numerical simulations of the nanometric aerosols in the lower portion of the bronchial tree. 2. Multiscale mathematical modeling of

  • Q : State Measuring complexity Measuring

    Measuring complexity: Many algorithms have an integer n, or two integers m and n, as input - e.g., addition, multiplication, exponentiation, factorisation and primality testing. When we want to describe or analyse the `easiness' or `hardness' of the a

  • Q : Logic and math The homework is attached

    The homework is attached in the first two files, it's is related to Sider's book, which is "Logic for philosophy" I attached this book too, it's the third file.

  • Q : Area Functions & Theorem Area Functions

    Area Functions 1. (a) Draw the line y = 2t + 1 and use geometry to find the area under this line, above the t - axis, and between the vertical lines t = 1 and t = 3. (b) If x > 1, let A(x) be the area of the region that lies under the line y = 2t + 1 between t

  • Q : Define terms Terms : Terms are defined

    Terms: Terms are defined inductively by the following clauses.               (i) Every individual variable and every individual constant is a term. (Such a term is called atom

  • Q : Numerical solution of PDE this

    this assignment contains two parts theoretical and coding the code has to be a new. old code and modified code will appear in the university website .

  • Q : Problem on augmented matrix Consider

    Consider the following system of linear equations.  (a) Write out t

  • Q : Use MS Excel to do the computations

    Select a dataset of your interest (preferably related to your company/job), containing one variable and atleast 100 data points. [Example: Annual profit figures of 100 companies for the last financial year]. Once you select the data, you should compute 4-5 summary sta

  • Q : Bolzano-Weierstrass property The

    The Bolzano-Weierstrass property does not hold in C[0, ¶] for the infinite set A ={sinnx:n<N} : A is infinite; Show that has no “ limit points”.

  • Q : What is the probability that the film

    T.C.Fox, marketing director for Metro-Goldmine Motion Pictures, believes that the studio's upcoming release has a 60 percent chance of being a hit, a 25 percent chance of being a moderate success, and a 15 percent chance of being a flop. To test the accuracy of his op