--%>

how you would use randomization in arranging experiment

The design of instrument controls affects how easily people can use them. An investigator used 25 students who were right-handed to determine whether right-handed subjects preferred right-handed threaded knobs. He had two machines that differed only in that one had a knob that turned in a clockwise fashion (right-handed threads), and the other had a knob that turned in a counterclockwise fashion, (left-handed threads). Turning the knobs moved an indicator bar on a scale. The investigator timed how many seconds it took each subject to move the bar a set distance, using each of the two machines, but only their right hand. So, each of the 25 subjects used only their right hand on the two machines, turning one knob clockwise and the other counterclockwise.

a)     Explain briefly how you would use randomization in arranging this experiment 

b)    Do an analysis to determine if the data shows that right-handed people are FASTER, or need LESS time, to operate knobs with right-handed threads that turn in a clockwise fashion compared to knobs that turn in a counterclockwise fashion.  

c)     Construct a 95% confidence interval for the mean time advantage of clockwise over counterclockwise threads for this group of subjects. 

d)    Are clockwise threaded knobs more efficient for right-handed people? What is the ratio, expressed as a percent, of the mean time for using clockwise threads compared to the mean time for using counterclockwise threads? 

   Related Questions in Advanced Statistics

  • Q : Error probability As of last year, only

    As of last year, only 20% of the employees in an organization used public transportation to commute to and from work. To determine if a recent campaign encouraging the use of public transportation has been effective, a random sample of 25 employees is to be interviewe

  • Q : Grouped Frequency Distributions Grouped

    Grouped Frequency Distributions: Guidelines for classes: A) There must be between 5 to 20 classes. B) The class width must be an odd number. This will assure that the class mid-points are integers rather than decimals. C) The classes should be mutually exclusive. This signifies that no data valu

  • Q : Problem on utility funtion probability

    Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b.  Suppose further that you do not know whether or not you

  • Q : Calculate corresponding t value or s

    1)    Construct a 99% confidence interval for the population mean µ.   2)    At what significance level do the data provide good evidence that the average body temperature is

  • Q : Use the law of iterated expectation to

    Suppose we have a stick of length L. We break it once at some point X _

    Q : Probability of Rolling die problem A

    A fair die is rolled (independently) 12 times. (a) Let X denote the total number of 1’s in 12 rolls. Find the expected value and variance of X. (b) Determine the probability of obtaining e

  • Q : Analyse the statistics of the data

    Assigment Question Select any two manufacturing companies and formulate the cost and revenue functions of the companies. analyse the statistics of the data and then sketch the functions and determine their breakeven points. (Note: You are required to interview the production and sales manag

  • Q : Probability of winning game Monte Carlo

    Monte Carlo Simulation for Determining Probabilities 1. Determining the probability of winning at the game of craps is difficult to solve analytically. We will assume you are playing the `Pass Line.'  So here is how the game is played: The shooter rolls a pair of

  • Q : Statistics Homework with SAS File is

    File is attached, need it by 8:30 AM Pacific (Seattle, WA) time. No delay acceptable. Need it March 25, 2014 on 8:30 AM Pacific time.

  • Q : Problem on Poisson distribution The

    The number of trucks coming to a certain warehouse each day follows the Poisson distribution with λ= 8. The warehouse can handle a maximum of 12 trucks a day. What is the probability that on a given day one or more trucks have to be sent away? Round the answer