--%>

how you would use randomization in arranging experiment

The design of instrument controls affects how easily people can use them. An investigator used 25 students who were right-handed to determine whether right-handed subjects preferred right-handed threaded knobs. He had two machines that differed only in that one had a knob that turned in a clockwise fashion (right-handed threads), and the other had a knob that turned in a counterclockwise fashion, (left-handed threads). Turning the knobs moved an indicator bar on a scale. The investigator timed how many seconds it took each subject to move the bar a set distance, using each of the two machines, but only their right hand. So, each of the 25 subjects used only their right hand on the two machines, turning one knob clockwise and the other counterclockwise.

a)     Explain briefly how you would use randomization in arranging this experiment 

b)    Do an analysis to determine if the data shows that right-handed people are FASTER, or need LESS time, to operate knobs with right-handed threads that turn in a clockwise fashion compared to knobs that turn in a counterclockwise fashion.  

c)     Construct a 95% confidence interval for the mean time advantage of clockwise over counterclockwise threads for this group of subjects. 

d)    Are clockwise threaded knobs more efficient for right-handed people? What is the ratio, expressed as a percent, of the mean time for using clockwise threads compared to the mean time for using counterclockwise threads? 

   Related Questions in Advanced Statistics

  • Q : MANOVA and Reflection Activity 10:

    Activity 10: MANOVA and Reflection 4Comparison of Multiple Outcome Variables This activity introduces you to a very common technique - MANOVA. MANOVA is simply an extension of an ANOVA and allows for the comparison of multiple outcome variables (again, a very common situation in research a

  • Q : Variation what are the advantages and

    what are the advantages and disadvantages of seasonal variation

  • Q : Use the law of iterated expectation to

    Suppose we have a stick of length L. We break it once at some point X _

    Q : Problem on consumers marginal utility

    Consider a consumer with probability p of becoming sick.  Let Is be the consumer’s income if he becomes sick, and let Ins be his income if he does not become sick, with Is < Ins. Suppo

  • Q : Analysing the Probabilities 1. In the

    1. In the waning seconds of Superbowl XLVII, the Baltimore Ravens elected to take a safety rather than punt the ball. A sports statistician wishes to analyze the effect this decision had on the probability of winning the game. (a) Which two of the following probabilities would most help t

  • Q : Describe how random sampling serves

    Explain sampling bias and describe how random sampling serves to avoid bias in the process of data collection.    

  • Q : Calculate confidence interval A nurse

    A nurse anesthetist was experimenting with the use of nitronox as an anesthetic in the treatment of children's fractures of the arm.  She treated 50 children and found that the mean treatment time (in minutes) was 26.26 minutes with a sample standard deviation of

  • Q : Problem on utility funtion probability

    Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b.  Suppose further that you do not know whether or not you

  • Q : Conclusion using p-value and critical

    A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evid

  • Q : True and False Statement Discuss the

    Discuss the following statements and explain why they are true or false: a)      Increasing the number of predictor variables will never decrease the R2 b)      Multicollinearity affects the int