--%>

how you would use randomization in arranging experiment

The design of instrument controls affects how easily people can use them. An investigator used 25 students who were right-handed to determine whether right-handed subjects preferred right-handed threaded knobs. He had two machines that differed only in that one had a knob that turned in a clockwise fashion (right-handed threads), and the other had a knob that turned in a counterclockwise fashion, (left-handed threads). Turning the knobs moved an indicator bar on a scale. The investigator timed how many seconds it took each subject to move the bar a set distance, using each of the two machines, but only their right hand. So, each of the 25 subjects used only their right hand on the two machines, turning one knob clockwise and the other counterclockwise.

a)     Explain briefly how you would use randomization in arranging this experiment 

b)    Do an analysis to determine if the data shows that right-handed people are FASTER, or need LESS time, to operate knobs with right-handed threads that turn in a clockwise fashion compared to knobs that turn in a counterclockwise fashion.  

c)     Construct a 95% confidence interval for the mean time advantage of clockwise over counterclockwise threads for this group of subjects. 

d)    Are clockwise threaded knobs more efficient for right-handed people? What is the ratio, expressed as a percent, of the mean time for using clockwise threads compared to the mean time for using counterclockwise threads? 

   Related Questions in Advanced Statistics

  • Q : Null hypothesis In testing the null

    In testing the null hypothesis H0: P=0.6 vs the alternative H1 : P < 0.6 for a binomial model b(n,p), the rejection region of a test has the structure X ≤ c, where X is the number of successes in n trials. For each of the following tests, d

  • Q : Analyse the statistics of the data

    Assigment Question Select any two manufacturing companies and formulate the cost and revenue functions of the companies. analyse the statistics of the data and then sketch the functions and determine their breakeven points. (Note: You are required to interview the production and sales manag

  • Q : Problem on utility funtion probability

    Suppose that your utility, U, is a function only of wealth, Y, and that U(Y) is as drawn below. In this graph, note that U(Y) increases linearly between points a and b.  Suppose further that you do not know whether or not you

  • Q : Probability of Rolling die problem A

    A fair die is rolled (independently) 12 times. (a) Let X denote the total number of 1’s in 12 rolls. Find the expected value and variance of X. (b) Determine the probability of obtaining e

  • Q : Bayesian Point Estimation What are the

    What are the Bayesian Point of estimation and what are the process of inference in Bayesian statistics?

  • Q : Describe how random sampling serves

    Explain sampling bias and describe how random sampling serves to avoid bias in the process of data collection.    

  • Q : Problem on Chebyshevs theorem 1. Prove

    1. Prove that the law of iterated expectations for continuous random variables.2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution which satisfies the bounds exactly for k ≥1, show that it satisfies the

  • Q : Describe what happens to the confidence

     A nurse practitioner working in a dermatology clinic is studying the efficacy of tretinoin in treating women's post partum abdominal stretch marks.  From a sample of 15 women, the mean reduction of stretch mark score is -0.33 with a sample standard deviation of 2.46.  Describe wha

  • Q : Calculate confidence interval A nurse

    A nurse anesthetist was experimenting with the use of nitronox as an anesthetic in the treatment of children's fractures of the arm.  She treated 50 children and found that the mean treatment time (in minutes) was 26.26 minutes with a sample standard deviation of

  • Q : Variation what are the advantages and

    what are the advantages and disadvantages of seasonal variation