--%>

Explain Coanda effect

Coanda effect: The effect which points out that a fluid tends to flow all along a surface, instead of flowing via free space.

   Related Questions in Physics

  • Q : What are Trojan satellites Trojan

    Trojan satellites: Satellites that orbit a body at one or the other Trojan points associative to a secondary body. There are numerous illustrations of this in our own solar system: a collection of asteroids that orbit in the Trojan points of Jupiter;

  • Q : What is Dulong-Petit law Dulong-Petit

    Dulong-Petit law (P. Dulong, A.T. Petit; 1819): The molar heat capacity is around equivalent to the three times the ideal gas constant: C = 3 R

  • Q : Physics Assignement Answers and

    Answers and explanation to all the questions.

  • Q : Define Kirkwood gaps Kirkwood gaps

    Kirkwood gaps (Kirkwood): The gaps in the asteroid belt, caused by the resonance effects from Jupiter. Similar gaps are also exists in Saturn's rings, due to the resonance effects of the shepherd moons.

  • Q : Black-hole dynamic laws or laws of

    Explain  laws of black-hole dynamics or First law of black hole dynamics and Second law of black hole dynamics? 

    Q : Nuclear Physics Homework Help NUCLEAR

    NUCLEAR PHYSICS (PHY555) HOMEWORK #1 1. Calculate the luminosity for a beam of protons of 1 µA colliding with a stationary liquid hydrogen target 30 cm long. Compare this to a typical colliding beam luminosity of ∼1034 cm-2

  • Q : What do you mean by the term cardiac

    What do you mean by the term cardiac output? Briefly explain it.

  • Q : Explain Rayleigh-Jeans law

    Rayleigh-Jeans law: For a blackbody at the thermodynamic temperature T, the radiance R over a range of frequencies between the nu and nu + dnu is specified by: R = 2 pi nu2 k T/c2.<

  • Q : Explain Gauss law for magnetic fields

    Gauss' law for magnetic fields (K.F. Gauss): The magnetic flux via a closed surface is zero (0); no magnetic charges present; in its differential form, div B = 0

  • Q : Define Tesla or SI unit of the magnetic

    Tesla: T (after N. Tesla, 1870-1943): The derived SI unit of the magnetic flux density stated as the magnetic flux density of a magnetic flux of 1 Wb via an area of 1 m2; it therefore has units of Wb/m2.