--%>

Define Einstein-Podolsky-Rosen effect or EPR effect

Einstein-Podolsky-Rosen effect: EPR effect: Consider the subsequent quantum mechanical thought-experiment: Take a particle that is at rest and has spun zero (0). This spontaneously decays into two fermions (spin 1/2 particles), that stream away in the opposite directions at high speed. Due to the law of conservation of spin, we recognize that one is a spin +1/2 and the other is spin -1/2. Which one is which? According to the quantum mechanics, neither takes on a exact state until it is examined (the wave-function is collapsed).

The EPR consequence explains that when one of the particles is detected, and its spin is then computed, then the other particle -- no matter where it is in the Universe -- instantly is forced to select as well and take on the role of the other particle. This exemplifies that certain types of quantum information travel instantly; not everything is restricted by the speed of light.

Though, it can be easily explained that this consequence does not make faster-than-light communication or travel probable.

   Related Questions in Physics

  • Q : Explain Right-hand rule Right-hand

    Right-hand rule: The trick for right-handed coordinate systems to establish which way the cross product of two three-vectors will be directed. There are some forms of this rule, and it can be exerted in many manners. If u and v are two vectors that ar

  • Q : Explain Casimir effect Casimir effect

    Casimir effect (Casimir): The quantum mechanical effect, where two very big plates positioned close to each other will experience an attractive force, in the nonattendance of other forces. The cause is implicit particle-antiparticle p

  • Q : Describe Wien displacement law Wien

    Wien displacement law: For a blackbody, the product result of the wavelength corresponding to the maximum radiances and the thermodynamic temperature is constant, then the Wien displacement law constant. As an outcome, as the temperature increases, th

  • Q : Calculating current in magnetically

    For the magnetically coupled circuit in Figure a, calculate I1 and I2. If the dotted terminals in are changed so that the circuit now becomes that in Figure b, re-calculate I1 and I2.

  • Q : What are Woodward-Hoffmann rules

    Woodward-Hoffmann rules: The rules leading the formation of products throughout certain kinds of organic reactions.

  • Q : What is Eotvos law of capillarity

    Eotvos law of capillarity (Baron L. von Eotvos; c. 1870): The surface tension gamma of a liquid is associated to its temperature T, the liquid's critical temperature, T*, and its density rho by: gamma ~=

  • Q : Explain Keplers laws or Keplers

    Explain Keplers laws or Keplers first law, second law and third law? Kepler's laws (J. Kepler) Kepler's first

  • Q : What do you understand by the term

    What do you understand by the term Ambient Reflection? And also write down its characteristic?

  • Q : Branches of physics Briefly list out

    Briefly list out the name of all the branches of physics?

  • Q : What is the turnover number of the

    What is the turnover number of the enzyme? Is that forever an evaluation parameter of the action or activity of the enzyme?