--%>

Who developed a rigorous theory for Brownian motion

Who developed a rigorous theory for Brownian motion?

E

Expert

Verified

In 1923 Wiener Norbert developed a rigorous theory for Brownian motion.

   Related Questions in Mathematics

  • Q : Profit-loss based problems A leather

    A leather wholesaler supplies leather to shoe companies. The manufacturing quantity requirements of leather differ depending upon the amount of leather ordered by the shoe companies to him. Due to the volatility in orders, he is unable to precisely predict what will b

  • Q : Competitive equilibrium 8. Halloween is

    8. Halloween is an old American tradition. Kids go out dressed in costume and neighbors give them candy when they come to the door. Spike and Cinderella are brother and sister. After a long night collecting candy, they sit down as examine what they have. Spike fi

  • Q : Explain trading of call options Explain

    Explain trading of call options.

  • Q : Formulating linear program of a

    A software company has a new product specifically designed for the lumber industry. The VP of marketing has been given a budget of $1,35,00to market the product over the quarter. She has decided that $35,000 of the budget will be spent promoting the product at the nat

  • Q : Explain Black–Scholes model Explain

    Explain Black–Scholes model.

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Problem on Maple (a) Solve the

    (a) Solve the following  by: (i) First reducing the system of first order differentiat equations to a second order differential equation. (ii) Decoupling the following linear system of equa

  • Q : What is limit x tends to 0 log(1+x)/x

    What is limit x tends to 0  log(1+x)/x to the base a?

  • Q : Define Well-formed formulas or Wffs

    Wffs (Well-formed formulas): These are defined inductively by the following clauses:    (i) If  P  is an n-ary predicate and  t1, …, tn are terms, then P(t1, …, t

  • Q : Area Functions & Theorem Area Functions

    Area Functions 1. (a) Draw the line y = 2t + 1 and use geometry to find the area under this line, above the t - axis, and between the vertical lines t = 1 and t = 3. (b) If x > 1, let A(x) be the area of the region that lies under the line y = 2t + 1 between t