--%>

Velocity of the particle

Determine the Velocity of the particle in terms of component veocities?

E

Expert

Verified

Velocity is rate of change of DISPLACEMENT, and the particle is moving or DISPLACING in x and y directions, and through the image or snapshots the positions are recoded.

The displacement in x or y direction will be change in subsequent position values, such as x2 – x1 or y2 – y1, or Xi+1 – Xi. and is denoted by dX or ΔX.

Similarly the change is time, when the change in position occurs, is t2 – t1 or dtor  Δt.

Now velocity is rate of change of displacement, i.e. dx/dt = ΔX/Δt = (Xi+1 – Xi)/(ti+1 – ti)

Delta t or ?t is the time duration between successive positions, which are recorded on successive images, now since there are 3000 frames per second. Hence 1/3000 seconds per frame.

This means that time duration or delta t between successive images and hence positions is 1/3000 sec.

Now velocity is (Xi+1 – Xi)/(ti+1 – ti) = (Xi+1 – Xi)/(1/3000)

But this is velocity in X direction only and since the particle is displaced in y direction as well you need to find velocity in Y direction also.

(Yi+1 – Yi)/(ti+1 – ti) = (Yi+1 – Yi)/(1/3000)

The velocity of the particle will be vector addition of these component velocities. In other words, you can calculate the velocity as, (VXi2 + VYi2)1/2.

   Related Questions in Physics

  • Q : Define Laue pattern Laue pattern (M.

    Laue pattern (M. von Laue): The pattern generated on a photographic film whenever high-frequency electromagnetic waves (like x-rays) are fired at the crystalline solid.

  • Q : Semiconductors and magnetism I need

    I need well-explained answers on the questions in attached documents

  • Q : Define Hertz or SI unit of frequency

    Define Hertz or SI unit of frequency: Hertz: Hz (after H. Hertz, 1857-1894): The derived SI unit of frequency, stated as a frequency of 1 cycle per s; it therefore has units of s-1.

  • Q : Describe Wiedemann-Franz law

    Wiedemann-Franz law: It is the ratio of the thermal conductivity of any pure metal (substance) to its electrical conductivity is just about constant for any specified temperature. This law holds pretty well apart from at low temperatures.

  • Q : What do you mean by the term alloy What

    What do you mean by the term alloy? Briefly illustrate it.

  • Q : What is Arago spot What is  Arago

    What is Arago spot? The bright spot which appears in the shadow of a consistent disc being backlit by monochromatic light originating from a point source. &n

  • Q : Calculate power consumed : A voltage v

    : A voltage v = 150 + j180 is applied across an impedance and the current flowing is I = 5 - j4 find ? A, impedance . B, resistance. C, reactance. D, power consumed. 

  • Q : Explain Photoelectric effect

    Photoelectric effect: An effect described by A. Einstein that demonstrates that light seems to be made up of particles, or photons. The light can excite electrons (termed as photoelectrons in this context) to be ejected from the metal. Light with a fr

  • Q : Explain Bohr magneton and Bohr radius

    Bohr magneton (N. Bohr) - This is the quantum of magnetic moment. Bohr radius (N. Bohr) - The distance equivalent to the mean distance of an electron from the nucleus in the ground state of hydroge

  • Q : Explain Gauss law for magnetic fields

    Gauss' law for magnetic fields (K.F. Gauss): The magnetic flux via a closed surface is zero (0); no magnetic charges present; in its differential form, div B = 0