--%>

State Hooke's law as it applies to a spring

a 6.00 kg mass is situated at (-1.00, 3.00) meters, what is its mass moment of inertia: a)about the x-axis b)about the y-axis c)About a line defined by x=6.00 m
The same object is hung from identical wires made of aluminum, cast iron, copper, and steel. rank the order in which the wires will stretch from least to greatest. 
A girl with a mass of 47 kg sits on one end of a seesaw that is 3.0m long and is pivoted 1.3 m from the girl. if the seesaw is just balanced when a boy sits at the opposite end, what is his weight?
A flywheel slows down uniformly and comes to rest in 22.0 seconds. it was rotating initally at 4 revolutions per second and has a di diameter of 50.0 cm. a) what was the centripetal acceleration when it was rotating initially? B) What was the tangential acceleration?
What is the net torque on a solid wheel with a mass of 1 kg and diameter of 1 m if it has an angular acceleration of 5.0 rad/s/s?
A mass of 100.0 kg is suspended from a steel wire of diameter 1.5 mm and length of 12.0 m. a) What will be the new length of the steel wire? b) If the diameter of the wire is doubled, what would be the stretch?
The drain plug on a cars engine has been tightened to a torque of 25 N*m. If an 8 inch long wrench is used to change the oil, what is the minimum force needed to loosen the plug. 
Three masses are positioned as follows: 3.0kg at (3,2), 4.0 kg at (0,-1), and 5.0 kg at (5, -7). Locate the center of mass of the system.
State Hooke's law as it applies to a spring. 
A 2.00 m long rod is hinged at one end. the rod is initially held in the horizontal position and then released as the free end is allowed to fall. calculate the angular acceleration of the rod as it is released. 
Compare the mass moments of inertia of the three planets shown blew. show your calculations properly.underneath is a picture of three circles. circle a has a mass of M and a radius of R. Circle B has a mass of 2M and a radius of 2R. Circle C has a mass of 3M and a radius of 3R.  

   Related Questions in Physics

  • Q : Explain Daltons law of partial pressures

    Dalton's law of partial pressures (J. Dalton): The net pressure of a mixture of ideal gases is equivalent to the sum of the partial pressures of its components; which is the sum of the pressures which each component would exert when it were present al

  • Q : Atomic model which the Erwin

    Briefly state the atomic model which the Erwin Schrodinger creates?

  • Q : Problem on Adiabatic law When air is

    When air is compressed adiabatically the law connecting the absolute temperature T and the pressure P is of the form T = A.Pn where A and N are constants. Show by drawing a suitable linear graph that the experimental dat

  • Q : What it means of Aberration Defining 

    Defining Aberration: The obvious change in the position of a light-emitting object due to the fidelity of the speed of light and the

  • Q : What is Meissner effect Meissner effect

    Meissner effect (W. Meissner; 1933): The reduction of the magnetic flux in a superconducting metal whenever it is cooled beneath the transition temperature. That is the superconducting materials imitate magnetic fields.

  • Q : Define Faraday constant Faraday

    Faraday constant: F (M. Faraday): The electric charge fetched by one mole of electrons or singly-ionized ions. It is equivalent to the product result of the Avogadro constant and the absolute value of the charge on an electron; this i

  • Q : Explain Stern-Gerlach experiment

    Stern-Gerlach experiment (O. Stern, W. Gerlach; 1922): The experiment which explains the features of spin (that is intrinsic angular momentum) as a different entity apart from the orbital angular momentum.

  • Q : Rest mass energy of the electron What

    What do you mean by the rest mass energy of the electron?

  • Q : Define Planck equation Planck equation:

    Planck equation: The quantum mechanical equation associating to the energy of a photon E to its frequency nu: E = h nu.

  • Q : Define Keplers 1-2-3 law Kepler's 1-2-3

    Kepler's 1-2-3 law: The other formulation of Kepler's third law, that relates to the mass m of the primary to a secondary's angular velocity omega and semi major axis a: m o = omega2 a3