--%>

State Hooke's law as it applies to a spring

a 6.00 kg mass is situated at (-1.00, 3.00) meters, what is its mass moment of inertia: a)about the x-axis b)about the y-axis c)About a line defined by x=6.00 m
The same object is hung from identical wires made of aluminum, cast iron, copper, and steel. rank the order in which the wires will stretch from least to greatest. 
A girl with a mass of 47 kg sits on one end of a seesaw that is 3.0m long and is pivoted 1.3 m from the girl. if the seesaw is just balanced when a boy sits at the opposite end, what is his weight?
A flywheel slows down uniformly and comes to rest in 22.0 seconds. it was rotating initally at 4 revolutions per second and has a di diameter of 50.0 cm. a) what was the centripetal acceleration when it was rotating initially? B) What was the tangential acceleration?
What is the net torque on a solid wheel with a mass of 1 kg and diameter of 1 m if it has an angular acceleration of 5.0 rad/s/s?
A mass of 100.0 kg is suspended from a steel wire of diameter 1.5 mm and length of 12.0 m. a) What will be the new length of the steel wire? b) If the diameter of the wire is doubled, what would be the stretch?
The drain plug on a cars engine has been tightened to a torque of 25 N*m. If an 8 inch long wrench is used to change the oil, what is the minimum force needed to loosen the plug. 
Three masses are positioned as follows: 3.0kg at (3,2), 4.0 kg at (0,-1), and 5.0 kg at (5, -7). Locate the center of mass of the system.
State Hooke's law as it applies to a spring. 
A 2.00 m long rod is hinged at one end. the rod is initially held in the horizontal position and then released as the free end is allowed to fall. calculate the angular acceleration of the rod as it is released. 
Compare the mass moments of inertia of the three planets shown blew. show your calculations properly.underneath is a picture of three circles. circle a has a mass of M and a radius of R. Circle B has a mass of 2M and a radius of 2R. Circle C has a mass of 3M and a radius of 3R.  

   Related Questions in Physics

  • Q : Explain Ideal gas laws or Boyle

    Explain Ideal gas laws or describe Boyle's law or Charle's law and Pressure law: Ideal gas laws: Boyle's law:

  • Q : What is Reflection law Reflection law :

    Reflection law: For a wave-front intersecting a reflecting surface, the angle of incidence is equivalent to the angle of reflection, in the similar plane stated by the ray of incidence and the normal.

  • Q : Universal law of universal gravitation

    Describe the universal law of universal gravitation? Briefly describe it.

  • Q : Dynamic strain aging and the strain

    What is the basic difference among the dynamic strain aging and the strain aging?

  • Q : Explain Rayleigh-Jeans law

    Rayleigh-Jeans law: For a blackbody at the thermodynamic temperature T, the radiance R over a range of frequencies between the nu and nu + dnu is specified by: R = 2 pi nu2 k T/c2.<

  • Q : Define Pascal or SI unit of pressure

    Pascal: Pa The derived SI unit of pressure stated as 1 N acting over a region of 1 m2; it therefore has units of N/m2

  • Q : Define Noether theorem Noether theorem

    Noether theorem (Noether): A theorem that explains that symmetries are what gives rise to conserved quantities. For example, the translational symmetry (that is the fact that the laws of physics work the same in all positions) gives r

  • Q : Non-Parametric Tests Activity

    Activity 9:   Non-Parametric Tests    4Non-Parametric Tests While you have learned a number of parametric statistical techniques, you are also aware that if the assumptions related to

  • Q : Define Lux or SI unit of the illuminance

    Lux: lx: The derived SI unit of the illuminance equivalent to the illuminance generated by a luminous flux of 1 lm distributed consistently over a region of 1 m2; it therefore has units of lm/m2.

  • Q : Problem on spacecraft Assuming that

    Assuming that ground stations are equally distributed on the Earth, how many ground stations are required to maintain constant contact with a spacecraft at 750 km altitude, and 72 degrees inclination?