--%>

Define Equivalence principle

Equivalence principle: The fundamental postulate of Sir Einstein’s general theory of relativity that posits that acceleration is basically indistinguishable from the gravitational field. In another words, when you are in an elevator that is utterly sealed and protected from the outside, and hence you can’t "peek outside," then when you feel a force (that is weight), it is basically not possible for you to say whether the elevator is present in a gravitational field, or whether the elevator has rockets joined to it and is accelerating "upward."

However that in practical conditions -- say, sitting in a closed room -- it would be probable to determine whether the acceleration felt was due to the uniform thrust or due to the gravitation (state, by computing the gradient of the field; if non-zero, it would point out a gravitational field instead of thrust); though, these differences could be made randomly small. The idea at the back is the equivalence principle is that it acts about the vicinity of a point, instead of over macroscopic distances. This would be not possible to state whether or not a given (random) acceleration field was caused by the thrust or gravitation by the use of physics by only.

The equivalence principle forecasts interesting general relativistic consequences since not only are the two indistinguishable to human observers, however also to the Universe as well -- any effect which occurs whenever an observer is accelerating must also occur in a gravitational field, and vice-versa.

   Related Questions in Physics

  • Q : What is Gray Gray : Gy (after L.H.

    Gray: Gy (after L.H. Gray, 1905-1965): The derived SI unit of engrossed dose, stated as the absorbed dose in which the energy per unit mass communicated to the matter by the ionizing radiation is 1 J/kg; it therefore has units of J/kg

  • Q : Define Hertz or SI unit of frequency

    Define Hertz or SI unit of frequency: Hertz: Hz (after H. Hertz, 1857-1894): The derived SI unit of frequency, stated as a frequency of 1 cycle per s; it therefore has units of s-1.

  • Q : Define Rayleigh criterion or resolving

    Rayleigh criterion: resolving power: The criterion for determining how delicately a set of optics might be able to differentiate. This  starts with the supposition that central ring of one image must fall on the first dark ring of the other; for

  • Q : What is Geometrized units Geometrized

    Geometrized units: The system of units whereby certain basic constants (G, c, k, and h) are set to unison. This makes computations in certain theories, like general relativity, much simpler to deal with, as such constants appear often.

    Q : Define Van der Waals force Van der

    Van der Waals force (J.D. van der Waals): The forces responsible for non-ideal behavior of gases, and for lattice energy of molecular crystals. There are three main causes: dipole-dipole interaction; dipole-induced dipole moments; and dispersion a for

  • Q : Meaning of Network Define the meaning

    Define the meaning of Network in brief.

  • Q : Explain BCS theory BCS theory -  The

    BCS theory - The theory put forth to elucidate both superconductivity and super fluidity. This suggests that in the superconducting (or super fluid) state electrons form Cooper pairs, where two electrons proceed as a single unit. This takes a non

  • Q : Explain Hawking radiation Hawking

    Hawking radiation (S.W. Hawking; 1973): The theory which black holes emit radiation similar to any other hot body. The virtual particle-antiparticle pairs are continuously being made in supposedly empty space. Infrequently, a pair wil

  • Q : Problem on Adiabatic law When air is

    When air is compressed adiabatically the law connecting the absolute temperature T and the pressure P is of the form T = A.Pn where A and N are constants. Show by drawing a suitable linear graph that the experimental dat

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source