--%>

Define Equivalence principle

Equivalence principle: The fundamental postulate of Sir Einstein’s general theory of relativity that posits that acceleration is basically indistinguishable from the gravitational field. In another words, when you are in an elevator that is utterly sealed and protected from the outside, and hence you can’t "peek outside," then when you feel a force (that is weight), it is basically not possible for you to say whether the elevator is present in a gravitational field, or whether the elevator has rockets joined to it and is accelerating "upward."

However that in practical conditions -- say, sitting in a closed room -- it would be probable to determine whether the acceleration felt was due to the uniform thrust or due to the gravitation (state, by computing the gradient of the field; if non-zero, it would point out a gravitational field instead of thrust); though, these differences could be made randomly small. The idea at the back is the equivalence principle is that it acts about the vicinity of a point, instead of over macroscopic distances. This would be not possible to state whether or not a given (random) acceleration field was caused by the thrust or gravitation by the use of physics by only.

The equivalence principle forecasts interesting general relativistic consequences since not only are the two indistinguishable to human observers, however also to the Universe as well -- any effect which occurs whenever an observer is accelerating must also occur in a gravitational field, and vice-versa.

   Related Questions in Physics

  • Q : Define Lumen or SI unit of luminous flux

    Lumen: lm: The derived SI unit of luminous flux, stated as the luminous flux produced by a uniform point source of 1 cd releasing its luminous energy over a solid angle of 1 sr; it therefore has units of cd sr.

  • Q : Newtons laws of motion or Newtons

    Explain Newtons laws of motion or Newtons first law, second law and third law of motion? Newton's laws of motion (Sir I. Newton)

    Q : Problem on waveforms The voltage v mV

    The voltage v mV in a circuit is given by: v = 20 sin (200 Πt - 0.7854)           where t is the time in seconds (a) State the amplitude, frequency, period and phase angle of v.(b) Determine the initial voltage.(c) Determin

  • Q : Explain Millikan oil drop experiment

    Millikan oil drop experiment (R.A. Millikan): A famed experiment designed to compute the electronic charge. The drops of oil were carried past a consistent electric field among charged plates. Subsequent to charging the drop with x-ra

  • Q : What do you mean by communication What

    What do you mean by communication? Illustrate in brief.

  • Q : What is Chandrasekhar limit

    Chandrasekhar limit (S. Chandrasekhar; 1930): A limit that mandates that no white dwarf (a collapsed, degenerate star) can be much massive than around 1.4 masses solar. Any of the degenerate mass more massive should inevitably collaps

  • Q : Define Schwarzschild radius

    Schwarzschild radius: The radius ‘r’ of the event horizon for a Schwarzschild black hole of mass m is specified by (in geometrized units) r = 2 m. In its conventional units: r = 2 G m/c2

  • Q : Define Photovoltaics Photovoltaics (PV)

    Photovoltaics (PV): It transform light directly into electricity. The typical current residential installation of 12m2 could produce around 1,300 kWh pa with a peak of around 1.9kW, though larger and more efficient installations are possibl

  • Q : Explain Faradays law Faraday's law (M.

    Faraday's law (M. Faraday): The line integral of the electric field about a closed curve is proportional to the instant time rate of change of the magnetic flux via a surface bounded by that closed curve; in the differential form,

  • Q : Problem on dot equivalent Obtain the

    Obtain the “dot” equivalent for the circuit shown below and use it to find the equivalent inductive reactance. 2141_dot.jpg

    Discover Q & A

    Leading Solution Library
    Avail More Than 1413496 Solved problems, classrooms assignments, textbook's solutions, for quick Downloads
    No hassle, Instant Access
    Start Discovering

    18,76,764

    1923374
    Asked

    3,689

    Active Tutors

    1413496

    Questions
    Answered

    Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!

    Submit Assignment

    ©TutorsGlobe All rights reserved 2022-2023.