--%>

What is Maxwells demon

Maxwell's demon (J.C. Maxwell): A contemplation experiment describing the concepts of entropy. We contain a container of gas that is partitioned into two equivalent sides; each side is in thermal equilibrium with the other. The walls and the separation of the container are ideal insulators.

Now suppose there is a very small demon who is waiting at the separation next to a small trap door. He can close and open the door with slight (negligible) work. Let's state he opens the door to permit a fast-moving molecule to travel from the left side to the right, or for a slow-moving molecule to travel from the right side to the left, and remains it closed for all other molecules. The total effect would be a flow of heat -- from left side to the right -- even although the container was in thermal equilibrium. This is obviously a violation of the second law of thermodynamics.

Thus where did we go wrong? It turns out that information has to do with entropy also. In order to sort out the molecules according to speeds, the demon would be containing to keep a memory of them -- and it turns out that rise in entropy of the maintenance of this simple memory would be more than make up for the reduction in entropy due to the flow of heat.

   Related Questions in Physics

  • Q : Why sun emerge flat throughout sunrise

    Briefly explain the reason why does sun emerge flat throughout sunrise and sunset?

  • Q : What is Magnetic monopole Magnetic

    Magnetic monopole: The hypothetical particle that comprises sources and sinks of the magnetic field. The magnetic monopoles have never been found, however would only cause pretty minor modifications to the Maxwell's equations. They also appear to be p

  • Q : Energy and light My question is Eph =

    My question is Eph = hcT. I have to rearrange the equation to make b b the subject and also find the SI units for b and how and why they are those units.....

  • Q : Define Planck equation Planck equation:

    Planck equation: The quantum mechanical equation associating to the energy of a photon E to its frequency nu: E = h nu.

  • Q : Becquerel Becquerel : Bq (after A.H.

    Becquerel: Bq (after A.H. Becquerel, 1852-1908) - The derived SI unit of the activity stated as the activity of radionuclide decay at a rate, on the average, of one nuclear transition every 1 s; it hence has units of s-1.

  • Q : Explain Lagrange points Lagrange points

    Lagrange points: The points in the vicinity of two massive bodies (like the Earth and Moon) with each others' relevant gravities balance. There are five, labeled L1 via L5. L1, L2, and L3 lie all along the centerline among the centers

  • Q : Radar gun problem Whenever a radar gun

    Whenever a radar gun states the pitch is 90 miles per hour at what point in the balls travel to home plate is the radar gun evaluating the velocity?

  • Q : Explain Joules laws and Joule's

    Joule's laws (J.P. Joule) Joule's first law: The heat Q generated whenever a current I flows via a resistance R for a specified time t is specified by: Q = I2

  • Q : Explain Pascals principle Pascal's

    Pascal's principle: The pressure exerted to an enclosed incompressible static fluid is transmitted undiminished to all portions of the fluid.

  • Q : Why Cadmium rods are given in a nuclear

    Cadmium rods are given in a nuclear reactor. Explain why?