--%>

Simulation with Arena

An office of state license bureau has two types of arrivals. Individuals interested in purchasing new plates are characterized to have inter-arrival times distributed as EXPO(6.8) and service times as TRIA(808, 13.7, 15.2); all times are in minutes. Individuals who want to renew or apply for a new driver’s license have inter-arrival times distributed as EXPO(8.7) and service times as TRIA(16.7, 20.5, 29.2). The office has two lines, one for each customer type. The office has five clerks: two devoted to plates (Mary and Kathy), two devoted to licenses (Sue and Jean), and the team leader (Neil) who can serve both customer types. Neil will serve the customer who has been waiting the longest. Assume that all clerks are available all the time for the eight-hour day. Note that when entities from the front of multiple FIFO queues (corresponding to multiple Process modules) try to seize the same Resource, the logic to select which entity “wins” is as though all the queues were merged together into a single FIFO queue. Observe the system or cycle time for both customer types. The office described in exercise above, is considering cross-training Kathy so she can serve both customer types. Modify the model to represent this, and see what effect this has on system time by customer.

   Related Questions in Mathematics

  • Q : Simulation with Arena An office of

    An office of state license bureau has two types of arrivals. Individuals interested in purchasing new plates are characterized to have inter-arrival times distributed as EXPO(6.8) and service times as TRIA(808, 13.7, 15.2); all times are in minutes. Individuals who want to renew or apply for a new d

  • Q : Problem on reduced row-echelon The

    The augmented matrix from a system of linear equations has the following reduced row-echelon form. 280_row echelon method.jpg

  • Q : Statistics math Detailed explanation of

    Detailed explanation of requirements for Part C-1 The assignment states the following requirement for Part 1, which is due at the end of Week 4: “Choose a topic from your field of study. Keep in mind you will need to collect at least [sic] 3- points of data for this project. Construct the sheet y

  • Q : Containee problem For queries Q 1 and Q

    For queries Q1 and Q2, we say Q1 is containedin Q2, denoted Q1 C Q2, iff Q1(D) C Q2

  • Q : First-order formulas over the

    Consider the unary relational symbols P and L, and the binary relational symbol On, where P(a) and I(a) encode that a is apoint and a (sraight) line in the 2-dimensional space, respectively, while On(a,b) encodes  that a is a point, b is a line, and o lies on b.

  • Q : Law of iterated expectations for

     Prove the law of iterated expectations for continuous random variables. 2. Prove that the bounds in Chebyshev's theorem cannot be improved upon. I.e., provide a distribution that satisfies the bounds exactly for k ≥1, show that it satisfies the bounds exactly, and draw its PDF. T

  • Q : Problem on Maple (a) Solve the

    (a) Solve the following  by: (i) First reducing the system of first order differentiat equations to a second order differential equation. (ii) Decoupling the following linear system of equa

  • Q : Explain Factorisation by Fermats method

    Factorisation by Fermat's method: This method, dating from 1643, depends on a simple and standard algebraic identity. Fermat's observation is that if we wish to nd two factors of n, it is enough if we can express n as the di fference of two squares.

  • Q : Ordinary Differential Equation or ODE

    What is an Ordinary Differential Equation (ODE)?

  • Q : Budgeted cash disbursements The ABC

    The ABC Company, a merchandising firm, has budgeted its action for December according to the following information: • Sales at $560,000, all for cash. • The invoice cost for goods purc