--%>

Simulation with Arena

An office of state license bureau has two types of arrivals. Individuals interested in purchasing new plates are characterized to have inter-arrival times distributed as EXPO(6.8) and service times as TRIA(808, 13.7, 15.2); all times are in minutes. Individuals who want to renew or apply for a new driver’s license have inter-arrival times distributed as EXPO(8.7) and service times as TRIA(16.7, 20.5, 29.2). The office has two lines, one for each customer type. The office has five clerks: two devoted to plates (Mary and Kathy), two devoted to licenses (Sue and Jean), and the team leader (Neil) who can serve both customer types. Neil will serve the customer who has been waiting the longest. Assume that all clerks are available all the time for the eight-hour day. Note that when entities from the front of multiple FIFO queues (corresponding to multiple Process modules) try to seize the same Resource, the logic to select which entity “wins” is as though all the queues were merged together into a single FIFO queue. Observe the system or cycle time for both customer types. The office described in exercise above, is considering cross-training Kathy so she can serve both customer types. Modify the model to represent this, and see what effect this has on system time by customer.

   Related Questions in Mathematics

  • Q : Who firstly discovered mathematical

    Who firstly discovered mathematical theory for random walks, that rediscovered later by Einstein?

  • Q : Formal Logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : How do it? integral e^(-t)*e^(tz) t

    integral e^(-t)*e^(tz) t between 0 and infinity for Re(z)<1

  • Q : Formal logic It's a problem set, they

    It's a problem set, they are attached. it's related to Sider's book which is "Logic to philosophy" I attached the book too. I need it on feb22 but feb23 still work

  • Q : Logic and math The homework is attached

    The homework is attached in the first two files, it's is related to Sider's book, which is "Logic for philosophy" I attached this book too, it's the third file.

  • Q : Problem on mass balance law Using the

    Using the mass balance law approach, write down a set of word equations to model the transport of lead concentration. A) Draw a compartmental model to represent  the diffusion of lead through the lungs and the bloodstream.

  • Q : Elasticity of Demand For the demand

    For the demand function D(p)=410-0.2p(^2), find the maximum revenue.

  • Q : First-order formulas over the

    Consider the unary relational symbols P and L, and the binary relational symbol On, where P(a) and I(a) encode that a is apoint and a (sraight) line in the 2-dimensional space, respectively, while On(a,b) encodes  that a is a point, b is a line, and o lies on b.

  • Q : Statistics Caterer determines that 37%

    Caterer determines that 37% of people who sampled the food thought it was delicious. A random sample of 144 out of population of 5000. The 144 are asked to sample the food. If P-hat is the proportion saying that the food is delicious, what is the mean of the sampling distribution p-hat?

  • Q : Nonlinear integer programming problem

    Explain Nonlinear integer programming problem with an example ?