--%>

How to calculate solutions ionic mobilities?

Transference numbers and molar conductors can be used to calculate ionic mobilities.

This tables under is giving the transference numbers for positive ions at 25 degree C and the values obtained by extrapolation to infinite dilution:

948_Solution ionic mobilities.png 

Molar ionic conductances and ionic mobilities at infinite dilution and 25 degree C.

1491_Solution ionic mobilities1.png 

Values can now be obtained for the contributions the individual ions of an electrolyte make to the molar conductance. The empirical law of Kohlrausch implies that a infinite dilution the molar conductance can be interpreted in terms of such ionic contributions and that the contributions of an ion are independent of the other ion of the electrolyte. At infinite dilution, therefore, we wrote:

?° = v + λ°+ v- λ°- where 

λ°+ and λ°- are the molar ionic conductors at infinite dilution. Since the transference numbers give the fraction of the total current by each ion, i.e., the fraction of the total conductance that each contributes, we can write;

v+ λ°+ = t°+ ?°  and v- λ°- = t°- ?°  

where t°+ and t°- are the transference numbers extrapolated to infinite dilution. 

Ionic mobilities: consider a cell of the type used to introduce the concept of molar conductance. Such a cell consists of two electrodes 1m apart and of cross-section area A such that an amount of solution that contains 1 mol of electrolyte is held between the electrodes. For an applied voltage , a current I will flow through the cell. These electrical quantities are related, since the conductance of such a cell is the molar conductance of the electrolyte, by:

I = ∫/R or I = ?∫

At infinite dilution the current can be attributed to the independent flow of positive and negative ions, and one can write:

I = ?°∫ = [v+ λ°+ + v- λ°- ] ∫ = v + λ°+ ∫ + v- λ°- ∫ = I+ + I-

   Related Questions in Chemistry

  • Q : Vapour pressure Vapour pressure of

    Vapour pressure of methanol in water Give me answer of this question. An aqueous solution of methanol in water has vapour pressure: (a) Equal to that of water (b) Equal to that of methanol (c) More than that of water (d) Less than that of water

  • Q : Basicity order order of decreasing

    order of decreasing basicity of urea and its substituents

  • Q : Question based on strength of solution

    Help me to go through this problem. On dissolving 1 mole of each of the following acids in 1 litre water, the acid which does not give a solution of strength 1N is: (a) HCl (b) Perchloric acid (c) HNO3 (d) Phosphoric acid

  • Q : Haloalkanes define primary secondary

    define primary secondary and tertiary alkyl halides with examples

  • Q : Molecular Structure type The ionic

    The ionic radii of Rb+ and I- respectively are 1.46 Å and 2.16Å. The very most probable type of structure exhibited by it is: (a) CsCl type  (b) ZnS type  (c) Nacl type  (d) CaF2 type

    Q : Alkaline medium The amount of KMnO 4

    The amount of KMnO4 required to prepare 100 ml of 0.1N solution in alkaline medium is: (a) 1.58 gm (b) 3.16 gm (c) 0.52 gm (d) 0.31 gmAnswer: (a) In alkaline medium KMnO4 act as ox

  • Q : Ddd 4) The addition of S2- ion to

    4) The addition of S2- ion to Fe(OH)2(s). Explain why the addition of S2- ion to Cr(OH)3(s) does not result in the formation of Cr2S3(s).

  • Q : Help 1) Chromium(III) hydroxide is

    1) Chromium(III) hydroxide is highly insoluble in distilled water but dissolves readily in either acidic or basic solution. Briefly explain why the compound can dissolve in acidic or in basic but not in neutral solution. Write appropriate equations to support your answer. 2) Explain how dissolving t

  • Q : Law of vapour pressure Select the right

    Select the right answer of the question. "The relative lowering of the vapour pressure is equal to the mole fraction of the solute." This law is called: (a) Henry's law (b) Raoult's law (c) Ostwald's law (d) Arrhenius's law

  • Q : Iso-electronic species Which ion has

    Which ion has the lowest radius from the following ions(a) Na+  (b) Mg2+  (c) Al3+  (d) Si4+ Answer: (d) All are the iso-electronic species but Si