--%>

How to calculate solutions ionic mobilities?

Transference numbers and molar conductors can be used to calculate ionic mobilities.

This tables under is giving the transference numbers for positive ions at 25 degree C and the values obtained by extrapolation to infinite dilution:

948_Solution ionic mobilities.png 

Molar ionic conductances and ionic mobilities at infinite dilution and 25 degree C.

1491_Solution ionic mobilities1.png 

Values can now be obtained for the contributions the individual ions of an electrolyte make to the molar conductance. The empirical law of Kohlrausch implies that a infinite dilution the molar conductance can be interpreted in terms of such ionic contributions and that the contributions of an ion are independent of the other ion of the electrolyte. At infinite dilution, therefore, we wrote:

?° = v + λ°+ v- λ°- where 

λ°+ and λ°- are the molar ionic conductors at infinite dilution. Since the transference numbers give the fraction of the total current by each ion, i.e., the fraction of the total conductance that each contributes, we can write;

v+ λ°+ = t°+ ?°  and v- λ°- = t°- ?°  

where t°+ and t°- are the transference numbers extrapolated to infinite dilution. 

Ionic mobilities: consider a cell of the type used to introduce the concept of molar conductance. Such a cell consists of two electrodes 1m apart and of cross-section area A such that an amount of solution that contains 1 mol of electrolyte is held between the electrodes. For an applied voltage , a current I will flow through the cell. These electrical quantities are related, since the conductance of such a cell is the molar conductance of the electrolyte, by:

I = ∫/R or I = ?∫

At infinite dilution the current can be attributed to the independent flow of positive and negative ions, and one can write:

I = ?°∫ = [v+ λ°+ + v- λ°- ] ∫ = v + λ°+ ∫ + v- λ°- ∫ = I+ + I-

   Related Questions in Chemistry

  • Q : Forms a molecule to an organic molecule

    Briefly state what forms a molecule to an organic molecule?

  • Q : Functions of centrioles Describe

    Describe briefly the functions of centrioles?

  • Q : Question relatede to calculate molarity

    Select the right answer of the question. What is molarity of a solution of HCl that contains 49% by weight of solute and whose specific gravity is 1.41 : (a) 15.25 (b) 16.75 (c) 18.92 (d) 20.08

  • Q : Molality of glucose Help me to go

    Help me to go through this problem. Molecular weight of glucose is 180. A solution of glucose which contains 18 gms per litre is : (a) 2 molal (b) 1 molal (c) 0.1 molal (d)18 molal

  • Q : Volume of solution containing solute

    What volume of solution contains 0.1 mole of the solute: (a) 100ml (b) 125ml  (c) 500ml (d) 62.5ml Choose the right answer from above.

  • Q : Explain various chemicals associated

    During processing of food, several chemicals are added to it to augment its shelf life and to make it more attractive as well. Main types of food addi

  • Q : Molar concentration of Iron chloride

    Provide solution of this question. A certain aqueous solution of FeCl3 (formula mass =162) has a density of 1.1g/ml and contains 20.0% Fecl. Molar concentration of this solution is: (a) .028 (b) 0.163 (c) 1.27 (d) 1.47

  • Q : Precipitation problem On passing H 2 S 

    On passing H2S  gas through a solution of Cu+ and Zn+2 ions, CuS is precipitated first because: (i) Solubility product of CuS is equal to the ionic product of ZnS (ii) Solubility product of CuS is equal to the solubility product o

  • Q : Determining highest normality What is

    What is the correct answer. Which of the given solutions contains highest normality: (i) 8 gm of KOH/litre (ii) N phosphoric acid (iii) 6 gm of NaOH /100 ml (iv) 0.5M H2SO4

  • Q : Amines arrange in decreasing order of

    arrange in decreasing order of basicity pi pyridine,pyridine,pyrrole, morphine