--%>

How to calculate solutions ionic mobilities?

Transference numbers and molar conductors can be used to calculate ionic mobilities.

This tables under is giving the transference numbers for positive ions at 25 degree C and the values obtained by extrapolation to infinite dilution:

948_Solution ionic mobilities.png 

Molar ionic conductances and ionic mobilities at infinite dilution and 25 degree C.

1491_Solution ionic mobilities1.png 

Values can now be obtained for the contributions the individual ions of an electrolyte make to the molar conductance. The empirical law of Kohlrausch implies that a infinite dilution the molar conductance can be interpreted in terms of such ionic contributions and that the contributions of an ion are independent of the other ion of the electrolyte. At infinite dilution, therefore, we wrote:

?° = v + λ°+ v- λ°- where 

λ°+ and λ°- are the molar ionic conductors at infinite dilution. Since the transference numbers give the fraction of the total current by each ion, i.e., the fraction of the total conductance that each contributes, we can write;

v+ λ°+ = t°+ ?°  and v- λ°- = t°- ?°  

where t°+ and t°- are the transference numbers extrapolated to infinite dilution. 

Ionic mobilities: consider a cell of the type used to introduce the concept of molar conductance. Such a cell consists of two electrodes 1m apart and of cross-section area A such that an amount of solution that contains 1 mol of electrolyte is held between the electrodes. For an applied voltage , a current I will flow through the cell. These electrical quantities are related, since the conductance of such a cell is the molar conductance of the electrolyte, by:

I = ∫/R or I = ?∫

At infinite dilution the current can be attributed to the independent flow of positive and negative ions, and one can write:

I = ?°∫ = [v+ λ°+ + v- λ°- ] ∫ = v + λ°+ ∫ + v- λ°- ∫ = I+ + I-

   Related Questions in Chemistry

  • Q : Moles of HCl present in .70 L of a .33

    Detail the moles of HCl which are present in .70 L of a .33 M HCl solution?

  • Q : Molarity of Sodium hydroxide Select the

    Select the right answer of the question. Molarity of 4% NaOH solution is : (a) 0.1M (b) 0.5M (c) 0.01M (d) 0.05M

  • Q : M ive me answer of this question. When

    ive me answer of this question. When mercuric iodide is added to the aqueous solution of potassium iodide, the: (a) Freezing point is raised (b) Freezing point is lowered (c) Freezing point does not change (d) Boiling point does not change

  • Q : Product of HCl Zn Illustrate  the

    Illustrate  the product of HCl Zn?

  • Q : Question related to colligative

    The colligative properties of a solution depend on: (a) Nature of solute particles present in it (b) Nature of solvent used (c) Number of solute particles present in it (d) Number of moles of solvent only

  • Q : Maximum vapour pressure Provide

    Provide solution of this question. Which solution will show the maximum vapour pressure at 300 K: (a)1MC12H22O11 (b)1M CH3 COOH (c) 1MNacl2 (d)1MNACl

  • Q : F-centres If a electron is present in

    If a electron is present in place of anion in a crystal lattice, then it is termed as: (a) Frenkel defect  (b) Schottky defect  (c) Interstitial defects (d) F-centre Answer: (d) When electrons are trapped in anion vacancies, thes

  • Q : What are condensation polymers? Give

    These types of polymers are formed as a result of condensation reaction between monomer units. Some common examples are being discussed here: 1. Polyesters 2047_condensat</span></p>
                                        </div>
                                        <!-- /comment-box -->
                                    </li>
   
   </td>
	</tr><tr>
		<td>
       
      <li>
                                        <div class=

    Q : Describe characteristics of halides and

    Halides characteristics

  • Q : Problem based on normality Choose the

    Choose the right answer from following. NaClO solution reacts with H2SO3 as,. NaClO + H2SO3→NaCl+ H2SO4. A solution of NaClO utilized in the above reaction contained 15g of NaClO per litre. The