--%>

Explain Right-hand rule

Right-hand rule: The trick for right-handed coordinate systems to establish which way the cross product of two three-vectors will be directed. There are some forms of this rule, and it can be exerted in many manners. If u and v are two vectors that are not parallel, then u cross v is a vector that is directed in the following way: Orient your right hand and therefore your thumb is perpendicular to the plane stated by the vectors u and v. If you can twist your fingers in the direction from vector u to v, your thumb will position in the direction of u cross v. (When it does not, the vector is directed in the opposite direction.) This has instant application for recognizing the orientation of the z-axis basis unit vector, k, in terms of the x- and y-axis basis unit vectors; twist your right hand in the direction of i to j, and your thumb will point in the direction of i cross j = k.

The rule is too applicable in numerous practical applications, like determining which way to turn a screw, and so forth. There is as well a left-hand rule that shows opposite chirality.

   Related Questions in Physics

  • Q : Explain Event horizon Event horizon:

    Event horizon: The radius which a spherical mass should be compressed to in order to convert it into a black hole, or the radius at which the time and space switch responsibilities. Once within the event horizon, it is basically impossible to escape t

  • Q : Define Gauss law Gauss' law (K.F.

    Gauss' law (K.F. Gauss): The electric flux via a closed surface is proportional to the arithmetical sum of electric charges contained in that closed surface; in its differential form, div E = rho,

  • Q : Biot-Savart law Biot-Savart law (J.B.

    Biot-Savart law (J.B. Biot, F. Savart) - The law which explains the contributions to the magnetic field by an electric current. This is analogous to the Coulomb's law. Mathematically: dB = (mu0 I)/(4 pi r2) dl cross e

  • Q : Semiconductors and magnetism I need

    I need well-explained answers on the questions in attached documents

  • Q : What is Chandrasekhar limit

    Chandrasekhar limit (S. Chandrasekhar; 1930): A limit that mandates that no white dwarf (a collapsed, degenerate star) can be much massive than around 1.4 masses solar. Any of the degenerate mass more massive should inevitably collaps

  • Q : Define Brackett series Brackett series

    Brackett series (Brackett) - The series (or sequence) that explains the emission spectrum of hydrogen whenever the electron is jumping to fourth orbital. All of the lines are in the infrared segment of the spectrum.

  • Q : Engineering in brief Define the term

    Define the term engineering in brief.

  • Q : Explain Null experiment Null

    Null experiment: The experiment which, after being performed, yields no outcome. The null experiments are just as significant as non-null experiments; when current theory predicts an observable result (or predicts there must be no observable result),

  • Q : Explain Cosmological constant

    Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been aro

  • Q : Branches of physics Briefly list out

    Briefly list out the name of all the branches of physics?