--%>

Explain Ideal gas equation

Ideal gas equation: The equation that sums up the ideal gas laws in one simple equation,

P V = n R T,

Here V is the volume, P is the pressure, n is the number of moles present, and T is the temperature of the sample.

   Related Questions in Physics

  • Q : Faradays laws of electrolysis or

    Explain Faradays laws of electrolysis or describe Faradays first law and Faradays second law? Faraday's laws of electrolysis (M. Faraday):

  • Q : Instrument used to measure the volume

    Name the instrument which is used to measure the volume? Explain in short?

  • Q : Physics Assignement Answers and

    Answers and explanation to all the questions.

  • Q : Define Machs principle Mach's principle

    Mach's principle (E. Mach; c. 1870): The inertia of any specific particle or particles of matter is attributable to the interaction among that piece of matter and the rest of the world. Therefore, a body in isolation would contain no inertia.

  • Q : Define Laue pattern Laue pattern (M.

    Laue pattern (M. von Laue): The pattern generated on a photographic film whenever high-frequency electromagnetic waves (like x-rays) are fired at the crystalline solid.

  • Q : Polarization In a non-polar - molecule,

    In a non-polar - molecule, the centre of the nuclei and electron orbit overlap when such a molecule is positioned in electric field, the electrons are attracted with the positive charged of the anode and repelled by the negative charges of the cathode. Because of grea

  • Q : Weights in pounds of the liquid gallons

    Write down the weights in pounds of the liquid gallons? Briefly describe it.

  • Q : Define Dirac constant Dirac constant :

    Dirac constant: Planck constant, modified form; hbar Sometimes more suitable form of the Planck constant, stated as: hbar = h/(2 pi)

  • Q : Define Siemens or SI unit of an

    Siemens: S (after E.W. von Siemens, 1816-1892): The derived SI unit of an electrical conductance equivalent to the conductance of an element which has a resistance of 1 O [ohm]; this has units of O-1.

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source