--%>

Explain Drake equation

Drake equation (F. Drake; 1961): The method of estimating the number of intelligent, scientific species (that is, able to communicate with other species) in subsistence in our space.

N = R fp ne fl fi ft L.

Here,

N is the number of species explained above at any specified moment in our Galaxy. The parameters it is evaluated from are as follows:

R = the rate of star formation in our solar system (in stars per year);
fp = the fraction of stars that contain planets;
ne = the total number of habitable planets per system with planets;
fl = the fraction of habitable planets on which the life arises;
fi = the fraction of such planets on which the life develops intelligence;
ft = the fraction of such planets where the intelligence grows into a technological civilization which is capable of communication; and
L = the mean life-time of such a scientific civilization.

Out of these quantities, only the first -- R -- is recognized with anything like any reliability; this is on the order of 10 stars per year. The others, most particularly the fractions, are approximately totally pure speculation at this point. Computations made by respectable astronomers vary by something like ten orders of magnitude in the last estimation of the number of species out there.

   Related Questions in Physics

  • Q : Define Ohm or SI unit of electric

    Ohm: Omega: O (after G. Ohm, 1787-1854) The derived SI unit of electric resistance, stated as the resistance among two points on a conductor whenever a constant potential difference of 1 V generates a current of 1 A in the conductor;

  • Q : Abhi what should be the choice of

    what should be the choice of standard unit.

  • Q : Define neuro-modulators What do you

    What do you mean by the term neuro-modulators? Briefly define it.

  • Q : Polarization In a non-polar - molecule,

    In a non-polar - molecule, the centre of the nuclei and electron orbit overlap when such a molecule is positioned in electric field, the electrons are attracted with the positive charged of the anode and repelled by the negative charges of the cathode. Because of grea

  • Q : Define Siemens or SI unit of an

    Siemens: S (after E.W. von Siemens, 1816-1892): The derived SI unit of an electrical conductance equivalent to the conductance of an element which has a resistance of 1 O [ohm]; this has units of O-1.

  • Q : Velocity of the particle Determine the

    Determine the Velocity of the particle in terms of component veocities?

  • Q : Define Fermats principle Fermat's

    Fermat's principle: principle of least time (P. de Fermat): The principle, put onward by P. de Fermat that explains the path taken by a ray of light among any two points in a system is for all time the path which takes the least time.

  • Q : Describe Wiedemann-Franz law

    Wiedemann-Franz law: It is the ratio of the thermal conductivity of any pure metal (substance) to its electrical conductivity is just about constant for any specified temperature. This law holds pretty well apart from at low temperatures.

  • Q : What is Gray Gray : Gy (after L.H.

    Gray: Gy (after L.H. Gray, 1905-1965): The derived SI unit of engrossed dose, stated as the absorbed dose in which the energy per unit mass communicated to the matter by the ionizing radiation is 1 J/kg; it therefore has units of J/kg

  • Q : Define Machs principle Mach's principle

    Mach's principle (E. Mach; c. 1870): The inertia of any specific particle or particles of matter is attributable to the interaction among that piece of matter and the rest of the world. Therefore, a body in isolation would contain no inertia.