--%>

Explain Drake equation

Drake equation (F. Drake; 1961): The method of estimating the number of intelligent, scientific species (that is, able to communicate with other species) in subsistence in our space.

N = R fp ne fl fi ft L.

Here,

N is the number of species explained above at any specified moment in our Galaxy. The parameters it is evaluated from are as follows:

R = the rate of star formation in our solar system (in stars per year);
fp = the fraction of stars that contain planets;
ne = the total number of habitable planets per system with planets;
fl = the fraction of habitable planets on which the life arises;
fi = the fraction of such planets on which the life develops intelligence;
ft = the fraction of such planets where the intelligence grows into a technological civilization which is capable of communication; and
L = the mean life-time of such a scientific civilization.

Out of these quantities, only the first -- R -- is recognized with anything like any reliability; this is on the order of 10 stars per year. The others, most particularly the fractions, are approximately totally pure speculation at this point. Computations made by respectable astronomers vary by something like ten orders of magnitude in the last estimation of the number of species out there.

   Related Questions in Physics

  • Q : Define Siemens or SI unit of an

    Siemens: S (after E.W. von Siemens, 1816-1892): The derived SI unit of an electrical conductance equivalent to the conductance of an element which has a resistance of 1 O [ohm]; this has units of O-1.

  • Q : What is Curie constant and Curies law

    What is Curie constant and Curies law? Curie constant: C (P. Curie): The characteristic constant, dependent on the material in question that points out the proportionality among its susceptibility

  • Q : What is Roche limit Roche limit : The

    Roche limit: The position about a massive body where the tidal forces due to the gravity of the primary equivalent or exceed the surface gravity of a specified satellite. Within the Roche limit, such a satellite will be interrupted by tides.

  • Q : Bell's inequality Bell's inequality

    Bell's inequality (J.S. Bell; 1964) - The quantum mechanical theorem that explains that if the quantum mechanics were to rely on the hidden variables, it should have non-local properties.    

  • Q : What do you mean by the term positron

    What do you mean by the term positron? Explain in short.

  • Q : Explain Muon experiment Muon

    Muon experiment: The experiment that demonstrates proves the prediction of time dilation by the special relativity. Muons, that are short-lived subatomic particles, are made with enormous energy in the upper environment by the interaction of energetic

  • Q : Define Sievert or SI unit of dose

    Sievert: Sv: The derived SI unit of dose equivalent, stated as the absorbed dose of the ionizing radiation multiplied by internationally-agreed-upon dimensionless weights, as various kinds of ionizing radiation cause various kinds of damage in the liv

  • Q : Ampere's law Explain  Ampere's law?  

    Explain Ampere's law?   Ampere's law (A.M. Ampere):

  • Q : Problem on waveforms The voltage v mV

    The voltage v mV in a circuit is given by: v = 20 sin (200 Πt - 0.7854)           where t is the time in seconds (a) State the amplitude, frequency, period and phase angle of v.(b) Determine the initial voltage.(c) Determin

  • Q : Explain Joules laws and Joule's

    Joule's laws (J.P. Joule) Joule's first law: The heat Q generated whenever a current I flows via a resistance R for a specified time t is specified by: Q = I2