--%>

Explain Drake equation

Drake equation (F. Drake; 1961): The method of estimating the number of intelligent, scientific species (that is, able to communicate with other species) in subsistence in our space.

N = R fp ne fl fi ft L.

Here,

N is the number of species explained above at any specified moment in our Galaxy. The parameters it is evaluated from are as follows:

R = the rate of star formation in our solar system (in stars per year);
fp = the fraction of stars that contain planets;
ne = the total number of habitable planets per system with planets;
fl = the fraction of habitable planets on which the life arises;
fi = the fraction of such planets on which the life develops intelligence;
ft = the fraction of such planets where the intelligence grows into a technological civilization which is capable of communication; and
L = the mean life-time of such a scientific civilization.

Out of these quantities, only the first -- R -- is recognized with anything like any reliability; this is on the order of 10 stars per year. The others, most particularly the fractions, are approximately totally pure speculation at this point. Computations made by respectable astronomers vary by something like ten orders of magnitude in the last estimation of the number of species out there.

   Related Questions in Physics

  • Q : Calculate time needed for thermocouple

    A thermocouple of K type is suddenly exposed to air with temperature of 1273K, Initial temperature was 293 K. Calculate the time needed for the thermocouple read the temperature with accuracy of better that 99%. Ignore radiation and conduction. The measuring element has a ball shape of diameter o

  • Q : Black-hole dynamic laws or laws of

    Explain  laws of black-hole dynamics or First law of black hole dynamics and Second law of black hole dynamics? 

    Q : What is Avogadro constant Avogadro

    Avogadro constant: L; NA (Count A. Avogadro; 1811) The total number of items in a sample of a substance that is equivalent to the number of molecules or atoms in a sample of an ideal gas that is at customary temperature and pressure. It is equivalent

  • Q : Define Coulomb or SI unit of electric

    Coulomb: C (after C. de Coulomb, 1736-1806): The derived SI unit of an electric charge, stated as the quantity of charge shifted by a current of 1 A in a period of 1 s; it therefore has units of A s.

  • Q : What is Paschen series Paschen series:

    Paschen series: The series that explains the emission spectrum of hydrogen whenever the electron is jumping to the third orbital. Each and every line is in the infrared part of the spectrum.

  • Q : Define Zeeman Effect or Zeeman line

    Zeeman Effect: Zeeman line splitting (P. Zeeman; 1896): Zeeman Effect is the splitting of lines in a spectrum whenever the source is exposed to the magnetic field.

  • Q : Explain Faradays law Faraday's law (M.

    Faraday's law (M. Faraday): The line integral of the electric field about a closed curve is proportional to the instant time rate of change of the magnetic flux via a surface bounded by that closed curve; in the differential form,

  • Q : Define Superconductivity

    Superconductivity: The phenomenon by which, at adequately low temperatures, a conductor can conduct the charge with zero (0) resistance. The current theory for describing superconductivity is the BCS theory.

  • Q : Define Charles law Charles' law (J.A.C.

    Charles' law (J.A.C. Charles; c. 1787): The volume of an ideal gas at constant (steady) pressure is proportional to the thermodynamic temperature of that gas.

  • Q : What is Super fluidity Super fluidity :

    Super fluidity: The phenomenon by which, at adequately low temperatures, a fluid can flow with zero (0) viscosity. These causes are related with the superconductivity.