--%>

Elementary particles concepts

Write down any two elementary particles that have nearly infinite life time?

E

Expert

Verified

The two elementary particles that have nearly infinite life time are: Electron and proton.

   Related Questions in Physics

  • Q : Define Planck constant Planck constant

    Planck constant: h: The basic constant equivalent to the ratio of the energy of a quantum of energy to its frequency. This is the quantum of action. This has the value 6.626 196 x 10-34 J s.

  • Q : Explain Michelson-Morley experiment

    Michelson-Morley experiment (A.A. Michelson, E.W. Morley; 1887): Probably the most famous null-experiment of all time, designed to confirm the existence of the proposed "lumeniferous aether" via which light waves were considered to pr

  • Q : Define Pauli Exclusion Principle Pauli

    Pauli Exclusion Principle (W. Pauli; 1925): No two similar fermions in a system, like electrons in an atom, can contain an identical set of the quantum numbers.

  • Q : Calculate the intensity I along y axis

    As shown in the figure below, a source at S is sending out a spherical wave: E1=(A×D/r) cos(wt-2πr/λ); where r is the distance to source

  • Q : What is Wiens displacement law constant

    Wien's displacement law constant, b: It is the constant of Wien displacement law. This has the value of 2.897 756 x 10-3 m K.

  • Q : Explain Fizeau method Fizeau method (A.

    Fizeau method (A. Fizeau, 1851): One of the primary truthfully relativistic experiments intended to compute the speed of light. Light is passed via a spinning cog-wheel driven by running water, is reflected off a far-away mirror, and

  • Q : Define Cosmological redshift

    Cosmological redshift: The effect where light emanates from a distant source appears redshifted since of the expansion of the space time itself.

  • Q : Define Olbers paradox Olbers' paradox

    Olbers' paradox (H. Olbers; 1826): If the Universe is infinite, consistent, and unchanging then the whole sky at night would be bright -- concerning as bright as the Sun. The further you stared out into space, the more stars there would be, and theref

  • Q : Explain Gauss law for magnetic fields

    Gauss' law for magnetic fields (K.F. Gauss): The magnetic flux via a closed surface is zero (0); no magnetic charges present; in its differential form, div B = 0

  • Q : Explain Davisson-Germer experiment

    Davisson-Germer experiment (C.J. Davisson, L.H. Germer; 1927): The experiment which conclusively proved the wave nature of electrons; diffraction patterns were examined by an electron beam penetrating into the nickel target.