--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : Water drain contradict problem Does

    Does water drain contradict clockwise in the northern hemisphere and clockwise in the southern hemi-sphere? Briefly explain it.

  • Q : Simulation using VMD and NMD programes

    I need the homework to be finished in five days. and could you please tell me if you are familiar with VMD and NMD simulation programs or not? I will send you some docments that I think it could help to solve the homework questions. But please send me an email so I can attached both files. all b

  • Q : What is Hooke law Hooke's law (R.

    Hooke's law (R. Hooke): The stress exerted to any solid is proportional to the strain it generates within the elastic limit for that solid. The constant of that proportionality is the Young modulus of elasticity for that material.

  • Q : How fireworks turn to shapes similar to

    Briefly illustrate how do fireworks turn to shapes similar to hearts and stars?

  • Q : Define Josephson effects Josephson

    Josephson effects (B.D. Josephson; 1962): Electrical effects examined whenever two superconducting materials are separated by a thin layer of the insulating substance.

  • Q : Explain the procedure to compute the

    Briefly explain the procedure to compute the tensile strength?

  • Q : Explain Maxwells equations and its

    Explain Maxwells equations and its four elegant equation? Maxwell's equations (J.C. Maxwell; 1864): The four elegant equations that explain classical electroma

  • Q : Define Parsec Parsec : The unit of

    Parsec: The unit of distance stated as the distance pointed by an Earth-orbit parallax of 1 arcsec. It equals around 206 264 au, or about 3.086 x 1016 m

  • Q : Blackbody radiation What is Blackbody

    What is Blackbody radiation - The radiation - that is the radiance at specific frequencies all across the spectrum -- generated by a blackbody -- which is, a perfect radiator and absorber of the heat. Physicists had complexity exp

  • Q : Define Luxon Luxon : The particle that

    Luxon: The particle that travels solely at c (that is the speed of light in vacuum). All luxons have a rest mass of exactly zero. Though they are mass less, luxons do take momentum. The photons are the prime illustration of luxons (that is the name it