--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : What is curvilinear motion What do you

    What do you mean by the term curvilinear motion? State in brief?

  • Q : What is Super fluidity Super fluidity :

    Super fluidity: The phenomenon by which, at adequately low temperatures, a fluid can flow with zero (0) viscosity. These causes are related with the superconductivity.

  • Q : Faradays laws of electrolysis or

    Explain Faradays laws of electrolysis or describe Faradays first law and Faradays second law? Faraday's laws of electrolysis (M. Faraday):

  • Q : Explain Lamberts laws or Lamberts

    What is Lamberts laws or Lamberts first law, second law and third law: Lambert's laws (J.H. Lambert) Lambert's first l

  • Q : What MeV in MeV photon signify What

    What does MeV in MeV photon signify? Briefly describe it.

  • Q : Define Weiss constant Weiss constant :

    Weiss constant: The characteristic constant dependent on the substance, employed in computing the susceptibility of the paramagnetic materials.

  • Q : Define Eddington limit Eddington limit

    Eddington limit (Sir A. Eddington): The hypothetical limit at which the photon pressure would surpass the gravitational attraction of a light-emitting body. That is, a body emanating radiation at bigger than the Eddington limit would

  • Q : Define Steradian or SI unit of solid

    Steradian: sr: The supplementary SI unit of solid angle stated as the solid central angle of a sphere which encloses a surface on the sphere equivalent to the square of the sphere's radius.

  • Q : Explain Tachyon paradox Tachyon

    Tachyon paradox: The argument explaining that tachyons (should they subsist, of course) can’t carry an electric charge. For an imaginary-massed particle travelling faster than c, less energy the tachyon has, the faster it travels, till at zero e

  • Q : Why tea kettle sing What is the reason

    What is the reason that the tea kettle sing? Briefly state the reason.