--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : Define Gauss law Gauss' law (K.F.

    Gauss' law (K.F. Gauss): The electric flux via a closed surface is proportional to the arithmetical sum of electric charges contained in that closed surface; in its differential form, div E = rho,

  • Q : What is Laplace equation Laplace

    Laplace equation (P. Laplace): For the steady-state heat conduction in 1-dimension, the temperature distribution is the explanation to Laplace's equation, which defines that the second derivative of temperature with respect to displac

  • Q : What is Ground source Heat Pumps Ground

    Ground source Heat Pumps (GSHP): This technology makes use of the energy stored in the earth’s crust, which comes mainly from solar radiation. Fundamentally, heat pumps take up heat at a certain temperature and discharge it at a higher temperatu

  • Q : Explain Hawking radiation Hawking

    Hawking radiation (S.W. Hawking; 1973): The theory which black holes emit radiation similar to any other hot body. The virtual particle-antiparticle pairs are continuously being made in supposedly empty space. Infrequently, a pair wil

  • Q : Define Atwood's machine Atwood's

    Atwood's machine: The weight-and-pulley system devised to compute the acceleration due to gravity at Earth's surface by computing the total acceleration of a set of weights of identified mass about a frictionless pulley.

  • Q : Define Watt or SI unit of power Watt: W

    Watt: W (after J. Watt, 1736-1819): The derived SI unit of power, stated as a power of 1 J acting over the period of 1 s; it therefore has the units of J/s.

  • Q : What do you mean by the term geocentric

    What do you mean by the term geocentric? Briefly describe it.

  • Q : What is Lumeniferous aether

    Lumeniferous aether: The substance that filled all the vacant spaces between matter that was employed to elucidate what medium light was "waving" in. Now it has been harmed the reputation of, as Maxwell's equations entail that electromagnetic radiatio

  • Q : Definition of Pascals principle Briefly

    Briefly state the definition of Pascal’s principle?

  • Q : Conservation laws and illustrations of

    Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ? Conservation laws: The law which states that,