--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : What is Gray Gray : Gy (after L.H.

    Gray: Gy (after L.H. Gray, 1905-1965): The derived SI unit of engrossed dose, stated as the absorbed dose in which the energy per unit mass communicated to the matter by the ionizing radiation is 1 J/kg; it therefore has units of J/kg

  • Q : Explain Malus law Malus' law (E.L.

    Malus' law (E.L. Malus): The light intensity I of a ray with primary intensity I0 travelling via a polarizer at an angle theta among the polarization of the light ray and the polarization axis of the polarizer is specified by:

    Q : Define Luxon Luxon : The particle that

    Luxon: The particle that travels solely at c (that is the speed of light in vacuum). All luxons have a rest mass of exactly zero. Though they are mass less, luxons do take momentum. The photons are the prime illustration of luxons (that is the name it

  • Q : Problem on magnetically coupled pair

    When one coil of a magnetically coupled pair has a current of 5.0A, the resulting fluxes Φ11 and Φ21 are 0.2mWb and 0.4mWb, respectively.  If the turns are N1 = 500 and N2 = 1500, find L1, L2, M and the coeffici

  • Q : Define Newton meter What do you mean by

    What do you mean by the term Newton meter? Explain briefly?

  • Q : Explain Stefan-Boltzmann law

    Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const

  • Q : Simulation using VMD and NMD programes

    I need the homework to be finished in five days. and could you please tell me if you are familiar with VMD and NMD simulation programs or not? I will send you some docments that I think it could help to solve the homework questions. But please send me an email so I can attached both files. all b

  • Q : Explain Null experiment Null

    Null experiment: The experiment which, after being performed, yields no outcome. The null experiments are just as significant as non-null experiments; when current theory predicts an observable result (or predicts there must be no observable result),

  • Q : Problem on Adiabatic law When air is

    When air is compressed adiabatically the law connecting the absolute temperature T and the pressure P is of the form T = A.Pn where A and N are constants. Show by drawing a suitable linear graph that the experimental dat

  • Q : Bell's inequality Bell's inequality

    Bell's inequality (J.S. Bell; 1964) - The quantum mechanical theorem that explains that if the quantum mechanics were to rely on the hidden variables, it should have non-local properties.