--%>

Conservation laws and illustrations of conservation laws

Explain Conservation laws and illustrations of conservation laws (Conservation of mass-energy, electric charge, linear momentum and angular momentum) ?

Conservation laws: The law which states that, in a closed system, the net quantity of something will not raise or reduce however remains exactly similar; that is, its rate of change is 0. For physical quantities, it defines that something can neither be formed nor destroyed. Mathematically, when a scalar X is the quantity considered, then

dX/dt = 0,
Or, consistently,
X = constant.

For a vector field F, the conservation law can be written as:
div F = 0;

i.e., the vector field F is divergence-free everywhere (that is, has no sources or sinks).

Some of the specific illustrations of conservation laws are:

Conservation of mass-energy: The net mass-energy of a closed system stays constant.

Conservation of electric charge: The net electric charge of a closed system stays constant.

Conservation of linear momentum: The net linear momentum of a closed system stays constant.

Conservation of angular momentum: The net angular momentum of a closed system stays constant.

There are numerous other laws which deal with particle physics, such as conservation of baryon number, of strangeness, and so forth, that is conserved in some basic interactions (like the electromagnetic interaction) however not others (like the weak interaction).

   Related Questions in Physics

  • Q : Brownian motion Brownian motion   - The

    Brownian motion  - The continuous random motion of a solid microscopic particle whenever suspended in a fluid medium due to the effect of ongoing bombardment by molecules and atoms.  

  • Q : What are Woodward-Hoffmann rules

    Woodward-Hoffmann rules: The rules leading the formation of products throughout certain kinds of organic reactions.

  • Q : Ampere's law Explain  Ampere's law?  

    Explain Ampere's law?   Ampere's law (A.M. Ampere):

  • Q : Explain Muon experiment Muon

    Muon experiment: The experiment that demonstrates proves the prediction of time dilation by the special relativity. Muons, that are short-lived subatomic particles, are made with enormous energy in the upper environment by the interaction of energetic

  • Q : What is Hooke law Hooke's law (R.

    Hooke's law (R. Hooke): The stress exerted to any solid is proportional to the strain it generates within the elastic limit for that solid. The constant of that proportionality is the Young modulus of elasticity for that material.

  • Q : Explain Twin paradox Twin paradox: One

    Twin paradox: One of the most well-known "paradoxes" in history, predicted by Sir Einstein's special theory of relativity. It takes two twins, born on similar date on Earth. One, Albert, leaves home for a trip about the Universe at very high speeds (v

  • Q : Define Fermi paradox Fermi paradox (E.

    Fermi paradox (E. Fermi): E. Fermi's inference, simplified with the phrase, "Where are they?" questioning that when the Galaxy is filled with intelligent and scientific civilizations, why haven't they come to us hitherto? There are nu

  • Q : Explain Keplers laws or Keplers

    Explain Keplers laws or Keplers first law, second law and third law? Kepler's laws (J. Kepler) Kepler's first

  • Q : Define Copernican principle Copernican

    Copernican principle (N. Copernicus): The idea, recommended by Copernicus, that the Sun, not the Earth, is at the center of the earth. We now know that neither idea is accurate (that is, the Sun is not even situated at the center of o

  • Q : What is Gaia hypothesis Gaia hypothesis

    Gaia hypothesis (J. Lovelock, 1969): The thought that the Earth as an entire must be regarded as a living organism and that biological procedures stabilize the atmosphere.