--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Explain Cosmological constant

    Cosmological constant (Lambda): The constant mentioned to the Einstein field equation, proposed to admit the static cosmological solutions. At the time the present philosophical view was steady-state model of the space, where the Universe has been aro

  • Q : Explain Coanda effect Coanda effect:

    Coanda effect: The effect which points out that a fluid tends to flow all along a surface, instead of flowing via free space.

  • Q : Formula for acceleration What is the

    What is the appropriate formula employed to compute the acceleration? Explain in brief.

  • Q : Define Mach number Mach number (E.

    Mach number (E. Mach): It is the ratio of the speed of an object in a specified medium to the speed of sound in that medium.

  • Q : Explain Thermodynamic laws Explain

    Explain Thermodynamic laws and also First law, Second law, third law and zeroth law of thermodynamics? Thermodynamic laws:

    Q : Define Equivalence principle

    Equivalence principle: The fundamental postulate of Sir Einstein’s general theory of relativity that posits that acceleration is basically indistinguishable from the gravitational field. In another words, when you are in an elevator that is utte

  • Q : Explain Curie-Weiss law Curie-Weiss law

    Curie-Weiss law (P. Curie, P.-E. Weiss): A more broad form of Curie's law that states that the susceptibility, khi, of a paramagnetic substance is associated to its thermodynamic temperature T by the equation:

    Q : Why the length of a standard meter

    Describe the reason in short why the length of a standard meter re-defined in the year of 1983?

  • Q : Define Centrifugal pseudo force

    Centrifugal pseudo force: A pseudo force which takes place whenever one is moving in uniform circular motion. One feels a "force" directed outward from the center of the motion.

  • Q : What is Reflection law Reflection law :

    Reflection law: For a wave-front intersecting a reflecting surface, the angle of incidence is equivalent to the angle of reflection, in the similar plane stated by the ray of incidence and the normal.