--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Dynamic strain aging and the strain

    What is the basic difference among the dynamic strain aging and the strain aging?

  • Q : Energy and light My question is Eph =

    My question is Eph = hcT. I have to rearrange the equation to make b b the subject and also find the SI units for b and how and why they are those units.....

  • Q : Define Watt or SI unit of power Watt: W

    Watt: W (after J. Watt, 1736-1819): The derived SI unit of power, stated as a power of 1 J acting over the period of 1 s; it therefore has the units of J/s.

  • Q : What is Maxwells demon Maxwell's demon

    Maxwell's demon (J.C. Maxwell): A contemplation experiment describing the concepts of entropy. We contain a container of gas that is partitioned into two equivalent sides; each side is in thermal equilibrium with the other. The walls and the separatio

  • Q : Explain Faradays law Faraday's law (M.

    Faraday's law (M. Faraday): The line integral of the electric field about a closed curve is proportional to the instant time rate of change of the magnetic flux via a surface bounded by that closed curve; in the differential form,

  • Q : Faradays laws of electrolysis or

    Explain Faradays laws of electrolysis or describe Faradays first law and Faradays second law? Faraday's laws of electrolysis (M. Faraday):

  • Q : Define Singularity Singularity : The

    Singularity: The center of a black hole, where the curvature of space-time is maximal. At singularity, the gravitational tides deviate; no solid object can yet theoretically survive beating the singularity. Though singularities usually predict inconsi

  • Q : Newtons laws of motion or Newtons

    Explain Newtons laws of motion or Newtons first law, second law and third law of motion? Newton's laws of motion (Sir I. Newton)

    Q : Explain Joules laws and Joule's

    Joule's laws (J.P. Joule) Joule's first law: The heat Q generated whenever a current I flows via a resistance R for a specified time t is specified by: Q = I2

  • Q : Brief note on the classification of

    Write down a brief note on the classification of Alloys?