--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Define Determinism principle

    Determinism principle: The principle that when one knows the state to an unlimited accuracy of a system at one point in time, one would be capable to predict the state of that system with unlimited accuracy at any other time, past or the future. For i

  • Q : Polarization In a non-polar - molecule,

    In a non-polar - molecule, the centre of the nuclei and electron orbit overlap when such a molecule is positioned in electric field, the electrons are attracted with the positive charged of the anode and repelled by the negative charges of the cathode. Because of grea

  • Q : Problem on synchronous TDM We require

    We require using synchronous TDM and joining 20 digital sources, each of 100 Kbps. Each and every output slot carries 1 bit for each digital source, however one extra bit is added up to each frame for synchronization.

    Q : Brownian motion Brownian motion   - The

    Brownian motion  - The continuous random motion of a solid microscopic particle whenever suspended in a fluid medium due to the effect of ongoing bombardment by molecules and atoms.  

  • Q : Explain Drake equation Drake equation

    Drake equation (F. Drake; 1961): The method of estimating the number of intelligent, scientific species (that is, able to communicate with other species) in subsistence in our space. N

  • Q : Simulation using VMD and NMD programes

    I need the homework to be finished in five days. and could you please tell me if you are familiar with VMD and NMD simulation programs or not? I will send you some docments that I think it could help to solve the homework questions. But please send me an email so I can attached both files. all b

  • Q : How radiation emitted from the body

    Describe the procedure how radiation emitted from the body? Illustrate in brief.

  • Q : Bell's inequality Bell's inequality

    Bell's inequality (J.S. Bell; 1964) - The quantum mechanical theorem that explains that if the quantum mechanics were to rely on the hidden variables, it should have non-local properties.    

  • Q : Explain Archimedes' principle What is 

    What is Archimedes' principle? A body which is submerged in a fluid is buoyed up by a force equivalent in magnitude to the weight of the fluid which is displaced, and directed upward all along a line via the c

  • Q : Radioactive dating-Determining of age

    In the radioactive dating we use half life to find out the age of a sample however not average life why? Describe.