--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : What is Paschen series Paschen series:

    Paschen series: The series that explains the emission spectrum of hydrogen whenever the electron is jumping to the third orbital. Each and every line is in the infrared part of the spectrum.

  • Q : Acceleration during this interval The

    The velocity of a body was observed to be constant throughout five minutes of its motion. Determine its acceleration during this interval?

  • Q : Define Lumen or SI unit of luminous flux

    Lumen: lm: The derived SI unit of luminous flux, stated as the luminous flux produced by a uniform point source of 1 cd releasing its luminous energy over a solid angle of 1 sr; it therefore has units of cd sr.

  • Q : State Hooke's law as it applies to a

    a 6.00 kg mass is situated at (-1.00, 3.00) meters, what is its mass moment of inertia: a)about the x-axis b)about the y-axis c)About a line defined by x=6.00 m The same object is hun

  • Q : Explain Uncertainty principle

    Uncertainty principle (W. Heisenberg; 1927): A principle, central to the quantum mechanics that states which two complementary parameters (like energy and time, position and momentum, or angular momentum and angular displacement) can’t both be r

  • Q : What MeV in MeV photon signify What

    What does MeV in MeV photon signify? Briefly describe it.

  • Q : Problem on beam For the beam

    For the beam illustrated below, we require to determine: (A) the support reactions

  • Q : Define Determinism principle

    Determinism principle: The principle that when one knows the state to an unlimited accuracy of a system at one point in time, one would be capable to predict the state of that system with unlimited accuracy at any other time, past or the future. For i

  • Q : Explain Stefan-Boltzmann law

    Stefan-Boltzmann law (Stefan, L. Boltzmann): The radiated power P (that is the rate of emission of electromagnetic energy) of a hot body is proportional to the radiating surface area, A, and the 4th power of the thermodynamic temperature, T. The const

  • Q : Define Systeme Internationale d'Unites

    Systeme Internationale d'Unites (SI): The rationalized and coherent system of units derived from the m.k.s. system (that itself is derived from metric system) in common utilization in physics nowadays.