--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Define Einstein-Podolsky-Rosen effect

    Einstein-Podolsky-Rosen effect: EPR effect: Consider the subsequent quantum mechanical thought-experiment: Take a particle that is at rest and has spun zero (0). This spontaneously decays into two fermions (spin 1/2 particles), that stream away in the

  • Q : Explain Keplers laws or Keplers

    Explain Keplers laws or Keplers first law, second law and third law? Kepler's laws (J. Kepler) Kepler's first

  • Q : Define Machs principle Mach's principle

    Mach's principle (E. Mach; c. 1870): The inertia of any specific particle or particles of matter is attributable to the interaction among that piece of matter and the rest of the world. Therefore, a body in isolation would contain no inertia.

  • Q : What is Speed of light Speed of light

    Speed of light (in vacuo): c: The speed at which the electromagnetic radiation spreads in a vacuum; it is stated as 299 792 458 m/s.

  • Q : What do you mean by the term crest What

    What do you mean by the term crest? Briefly illustrate it.

  • Q : Why Cadmium rods are given in a nuclear

    Cadmium rods are given in a nuclear reactor. Explain why?

  • Q : Define Coulomb or SI unit of electric

    Coulomb: C (after C. de Coulomb, 1736-1806): The derived SI unit of an electric charge, stated as the quantity of charge shifted by a current of 1 A in a period of 1 s; it therefore has units of A s.

  • Q : Secondary electron image and back

    What is main difference between secondary electron image and the back scattered electron image? State briefly.

  • Q : Define Josephson effects Josephson

    Josephson effects (B.D. Josephson; 1962): Electrical effects examined whenever two superconducting materials are separated by a thin layer of the insulating substance.

  • Q : Define Charles law Charles' law (J.A.C.

    Charles' law (J.A.C. Charles; c. 1787): The volume of an ideal gas at constant (steady) pressure is proportional to the thermodynamic temperature of that gas.