--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Explain Schroedingers cat

    Schroedinger's cat (E. Schroedinger; 1935): A thought experiment designed to exemplify the counterintuitive and strange ideas of reality that come all along with the quantum mechanics. A cat is sealed within a clos

  • Q : Explain the cause of Brownian motion

    Briefly define or explain the cause of Brownian motion?

  • Q : What is Bernoulli's equation

    Bernoulli's equation - In an ir-rotational fluid, the sum of static pressure, the weight of the fluid per unit mass times the height and half of the density times the velocity squared is steady all through the fluid 

  • Q : Heating a bucket of water than the cup

    Briefly describe the reason why it takes longer to heat a bucket of water than the cup of water?

  • Q : Problem on Adiabatic law When air is

    When air is compressed adiabatically the law connecting the absolute temperature T and the pressure P is of the form T = A.Pn where A and N are constants. Show by drawing a suitable linear graph that the experimental dat

  • Q : What is Wiens displacement law constant

    Wien's displacement law constant, b: It is the constant of Wien displacement law. This has the value of 2.897 756 x 10-3 m K.

  • Q : Describe Wien displacement law Wien

    Wien displacement law: For a blackbody, the product result of the wavelength corresponding to the maximum radiances and the thermodynamic temperature is constant, then the Wien displacement law constant. As an outcome, as the temperature increases, th

  • Q : Define Henry or SI unit of inductance

    Henry: H (after W. Henry, 1775-1836): The derived SI unit of inductance, stated as the inductance of a closed circuit in which the electromotive force of 1 V is generated whenever the electric current differs uniformly at a rate of 1

  • Q : How elevation and air pressure affects

    Briefly state how does the elevation and air pressure affects the boiling point of water?

  • Q : Anthropic principle What is  Anthropic

    What is Anthropic principle? Explain Weak anthropic principle and Strong anthropic principle?

    Discover Q & A

    Leading Solution Library
    Avail More Than 1441234 Solved problems, classrooms assignments, textbook's solutions, for quick Downloads
    No hassle, Instant Access
    Start Discovering

    18,76,764

    1959448
    Asked

    3,689

    Active Tutors

    1441234

    Questions
    Answered

    Start Excelling in your courses, Ask an Expert and get answers for your homework and assignments!!

    Submit Assignment

    ©TutorsGlobe All rights reserved 2022-2023.