--%>

Collision & Transition State Theory Homework


Assuming ideal gas: a)  Calculate the average velocity of a nitrogen molecule at 298K and compare to the velocity of a helium molecule at the same conditions.

b)      Calculate the temperature where the velocity of a nitrogen molecule will be the same as that of a helium molecule at 298K.

2. Assuming 1 mol of ideal gas at 100 °C and 1 atm. total pressure and a collision time of 10-13 seconds:

a)      Calculate the total collision number for O2 molecules.  Estimate the molecular diameter for O2 using ChemSketch.

b)      Calculate the total collision number for a mixture of O2 and O4 molecules.  Use a molecular diameter of 4 Å for O4 complexes and assume that all O2-O2 collisions result in the formation of one O4 complex.

a)      What can be concluded regarding the relative likelihood of 2-body interactions (O2-O2) as compared to 3-body interactions (O2-O4)?

 

3. The decomposition of HI:

 

2HI - > I2 + H2

has an experimentally-determined rate constant at 321.4 °C and 1.0 atm of k = 2.0x10-6 l/gmol-s

From collision theory, estimate the rate constant for this reaction and compare to the experimental value.  Assume the steric factor (p) is equal to unity and the activation energy for the reaction is Ea=44 Kcal/gmol. Estimate σAA using ChemSketch.

 

4.  The reaction between atomic and molecular hydrogen proceeds via a linear symmetrical transition state (H3):

H + H2 < -> (H3 ) -> H2+H

Compute the frequency factor (pre-exponential) for this reaction at 300K using transition state theory.

Data:

Moment of inertia (H3) = 3.34x10-40 g-cm2

Moment of inertia (H2) = estimate using ChemSketch

Fundamental vibrational frequency (H2) @ 4395.2 cm-1

Fundamental Frequencies, H3

                Stretching @ 3650 cm-1

                Doubly degenerate bending @ 670 cm-1 

  σ (O2) = 2.636 Å

 σAA = 3.47 Å

 I (H2) = 4.2X10-41 g-cm2

   Related Questions in Physics

  • Q : Define neuro-modulators What do you

    What do you mean by the term neuro-modulators? Briefly define it.

  • Q : Explain Fizeau method Fizeau method (A.

    Fizeau method (A. Fizeau, 1851): One of the primary truthfully relativistic experiments intended to compute the speed of light. Light is passed via a spinning cog-wheel driven by running water, is reflected off a far-away mirror, and

  • Q : Radar gun problem Whenever a radar gun

    Whenever a radar gun states the pitch is 90 miles per hour at what point in the balls travel to home plate is the radar gun evaluating the velocity?

  • Q : What is Meissner effect Meissner effect

    Meissner effect (W. Meissner; 1933): The reduction of the magnetic flux in a superconducting metal whenever it is cooled beneath the transition temperature. That is the superconducting materials imitate magnetic fields.

  • Q : Define Tipler machine Tipler machine:

    Tipler machine: The solution to Einstein's equations of general relativity which permits time travel. A tremendously dense (that is, on the order of the density of neutron star matter), infinitely-long cylinder that rotates very quickly can form close

  • Q : Explain Muon experiment Muon

    Muon experiment: The experiment that demonstrates proves the prediction of time dilation by the special relativity. Muons, that are short-lived subatomic particles, are made with enormous energy in the upper environment by the interaction of energetic

  • Q : Motion balance principle Explain in

    Explain in detail the motion balance principle

  • Q : Explain Einstein field equation

    Einstein field equation: The cornerstone of Einstein's general theory of relativity, associating the gravitational tensor G to the stress-energy tensor T by the simple equation: G = 8 pi T<

  • Q : What is Roche limit Roche limit : The

    Roche limit: The position about a massive body where the tidal forces due to the gravity of the primary equivalent or exceed the surface gravity of a specified satellite. Within the Roche limit, such a satellite will be interrupted by tides.

  • Q : Define Volt or SI unit of electric

    Volt: V (after A. Volta, 1745-1827): The derived SI unit of electric potential, stated as the difference of potential among the two points on a conductor fetching  a constant current of 1 A whenever the power dissipated between the points is 1 W;