--%>

conclusion using p-value and critical value approaches

A sample of 9 days over the past six months showed that a clinic treated the following numbers of patients: 24, 26, 21, 17, 16, 23, 27, 18, and 25. If the number of patients seen per day is normally distributed, would an analysis of these sample data provide evidence that the variance in the number of patients seen per day is less than 10? Use α = .025 level of significance. What is your conclusion using p-value and critical value approaches. Is the conclusion different in both the cases?

E

Expert

Verified

 

Hypothesis Formation

H0: σ =10

H1: σ < 10

Test Statistics

χ2 = (n-1).S2/ σ2

Critical Region

Reject H0 in favor of alternative if χ2 test statistic lesser than the critical value of χ2

i.e χ2test statistic < critical χ2

Critical value of χ2 at 0.025 Significance Level for single tail test

Df = n – 1 = 9 – 1 = 8

Critical value of χ2 with df 8 and alpha 0.025 = 2.18

Computation

Data (X)

X – X-bar

(X-X-bar)2

24

2.111111

4.45679

26

4.111111

16.90123

21

-0.88889

0.790123

17

-4.88889

23.90123

16

-5.88889

34.67901

23

1.111111

1.234568

27

5.111111

26.12346

18

-3.88889

15.12346

25

3.111111

9.679012

 

Sum of (X-X-bar)2 = 132.89

S2 = 132.89/9-1

     = 16.61 

χ2 = (9-1)*16.61/10

    = 13.29

Decision

As χ2 statistic is not less than critical value, therefore we can’t say that variance is less than 10. P-value for critical value is 0.01 and it is approximately found from χ2 table.  P-value is greater than our tolerance for ambiguity therefore we can’t that variance is significantly lower than 10.

 

   Related Questions in Advanced Statistics

  • Q : Binomial distribution 1) A Discrete

    1) A Discrete random variable can be described as Binomial distribution if is satisfies four conditions, Briefly discuss each of these conditions2) A student does not study for a multiple choice examination and decides to guess the correct answers, If the

  • Q : Discrete and continuous data

    Distinguish between discrete and continuous data in brief.

  • Q : Analyse the statistics of the data

    Assigment Question Select any two manufacturing companies and formulate the cost and revenue functions of the companies. analyse the statistics of the data and then sketch the functions and determine their breakeven points. (Note: You are required to interview the production and sales manag

  • Q : Probability of winning game Monte Carlo

    Monte Carlo Simulation for Determining Probabilities 1. Determining the probability of winning at the game of craps is difficult to solve analytically. We will assume you are playing the `Pass Line.'  So here is how the game is played: The shooter rolls a pair of

  • Q : Probability and Statistics

    Instructions: Do your work on this question and answer sheet. Please print or write legibly, and, as always, be complete but succinct. Record your answer and your supporting work in the designated space. Explain your method of solution and be sure to label clearly any

  • Q : Problem on Poisson distribution The

    The number of trucks coming to a certain warehouse each day follows the Poisson distribution with λ= 8. The warehouse can handle a maximum of 12 trucks a day. What is the probability that on a given day one or more trucks have to be sent away? Round the answer

  • Q : Bayesian Point Estimation What are the

    What are the Bayesian Point of estimation and what are the process of inference in Bayesian statistics?

  • Q : Correlation Define the term Correlation

    Define the term Correlation and describe Correlation formula in brief.

  • Q : Probability Distributions and Data

    1. A popular resort hotel has 300 rooms and is usually fully booked. About 4% of the time a reservation is canceled before 6:00 p.m. deadline with no penalty. What is the probability that at least 280 rooms will be occupied? Use binomial distribution to find the exact value and the normal approxi

  • Q : Probability of signaling Quality

    Quality control: when the output of a production process is stable at an acceptable standard, it is said to be "in control?. Suppose that a production process has been in control for some time and that the proportion of defectives has been 0.5. as a means of monitorin